Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -88,10 +88,6 @@ Refer to the [dimensions](/vectorize/best-practices/create-indexes/#dimensions)

The distance metric is an index used for vector search. It defines how it determines how close your query vector is to other vectors within the index.

- Distance metrics determine how the vector search engine assesses similarity between vectors.
- Cosine, Euclidean (L2), and Dot Product are the most commonly used distance metrics in vector search.
- The machine learning model and type of embedding you use will determine which distance metric is best suited for your use-case.
- Different metrics determine different scoring characteristics. For example, the `cosine` distance metric is well suited to text, sentence similarity and/or document search use-cases. `euclidean` can be better suited for image or speech recognition use-cases.
- Distance metrics determine how the vector search engine assesses similarity between vectors.
- Cosine, Euclidean (L2), and Dot Product are the most commonly used distance metrics in vector search.
- The machine learning model and type of embedding you use will determine which distance metric is best suited for your use-case.
Expand Down