|
| 1 | +//===----------------------------------------------------------------------===// |
| 2 | +// |
| 3 | +// Peloton |
| 4 | +// |
| 5 | +// augmented_nn.cpp |
| 6 | +// |
| 7 | +// Identification: src/brain/workload/augmented_nn.cpp |
| 8 | +// |
| 9 | +// Copyright (c) 2015-2018, Carnegie Mellon University Database Group |
| 10 | +// |
| 11 | +//===----------------------------------------------------------------------===// |
| 12 | + |
| 13 | +#include "brain/selectivity/augmented_nn.h" |
| 14 | +#include "brain/util/model_util.h" |
| 15 | +#include "brain/util/tf_session_entity/tf_session_entity.h" |
| 16 | +#include "brain/util/tf_session_entity/tf_session_entity_input.h" |
| 17 | +#include "brain/util/tf_session_entity/tf_session_entity_output.h" |
| 18 | +#include "util/file_util.h" |
| 19 | + |
| 20 | +namespace peloton { |
| 21 | +namespace brain { |
| 22 | + |
| 23 | +AugmentedNN::AugmentedNN(int column_num, int order, int neuron_num, |
| 24 | + float learn_rate, int batch_size, int epochs) |
| 25 | + : BaseTFModel("src/brain/modelgen", "src/brain/modelgen/augmented_nn.py", |
| 26 | + "src/brain/modelgen/augmented_nn.pb"), |
| 27 | + column_num_(column_num), |
| 28 | + order_(order), |
| 29 | + neuron_num_(neuron_num), |
| 30 | + learn_rate_(learn_rate), |
| 31 | + batch_size_(batch_size), |
| 32 | + epochs_(epochs) { |
| 33 | + GenerateModel(ConstructModelArgsString()); |
| 34 | + // Import the Model |
| 35 | + tf_session_entity_->ImportGraph(graph_path_); |
| 36 | + // Initialize the model |
| 37 | + TFInit(); |
| 38 | +} |
| 39 | + |
| 40 | +std::string AugmentedNN::ConstructModelArgsString() const { |
| 41 | + std::stringstream args_str_builder; |
| 42 | + args_str_builder << " --column_num " << column_num_; |
| 43 | + args_str_builder << " --order " << order_; |
| 44 | + args_str_builder << " --neuron_num " << neuron_num_; |
| 45 | + args_str_builder << " --lr " << learn_rate_; |
| 46 | + args_str_builder << " " << this->modelgen_path_; |
| 47 | + return args_str_builder.str(); |
| 48 | +} |
| 49 | + |
| 50 | +std::string AugmentedNN::ToString() const { |
| 51 | + std::stringstream model_str_builder; |
| 52 | + model_str_builder << "augmented_nn("; |
| 53 | + model_str_builder << "column_num = " << column_num_; |
| 54 | + model_str_builder << ", order = " << order_; |
| 55 | + model_str_builder << ", neuron_num = " << neuron_num_; |
| 56 | + model_str_builder << ", lr = " << learn_rate_; |
| 57 | + model_str_builder << ", batch_size = " << batch_size_; |
| 58 | + model_str_builder << ")"; |
| 59 | + return model_str_builder.str(); |
| 60 | +} |
| 61 | + |
| 62 | +// returns a batch |
| 63 | +void AugmentedNN::GetBatch(const matrix_eig &mat, size_t batch_offset, |
| 64 | + size_t bsz, matrix_eig &data, |
| 65 | + matrix_eig &target) { |
| 66 | + size_t row_idx = batch_offset * bsz; |
| 67 | + data = mat.block(row_idx, 0, bsz, mat.cols() - 1); |
| 68 | + target = mat.block(row_idx, mat.cols() - 1, bsz, 1); |
| 69 | +} |
| 70 | + |
| 71 | +// backpropagate once |
| 72 | +void AugmentedNN::Fit(const matrix_eig &X, const matrix_eig &y, int bsz) { |
| 73 | + auto data_batch = EigenUtil::Flatten(X); |
| 74 | + auto target_batch = EigenUtil::Flatten(y); |
| 75 | + std::vector<int64_t> dims_data{bsz, X.cols()}; |
| 76 | + std::vector<int64_t> dims_target{bsz, 1}; |
| 77 | + std::vector<TfFloatIn *> inputs_optimize{ |
| 78 | + new TfFloatIn(data_batch.data(), dims_data, "data_"), |
| 79 | + new TfFloatIn(target_batch.data(), dims_target, "target_"), |
| 80 | + new TfFloatIn(learn_rate_, "learn_rate_")}; |
| 81 | + tf_session_entity_->Eval(inputs_optimize, "optimizeOp_"); |
| 82 | + std::for_each(inputs_optimize.begin(), inputs_optimize.end(), TFIO_Delete); |
| 83 | +} |
| 84 | + |
| 85 | +float AugmentedNN::TrainEpoch(const matrix_eig &mat) { |
| 86 | + std::vector<float> losses; |
| 87 | + // Obtain relevant metadata |
| 88 | + int min_allowed_bsz = 1; |
| 89 | + int bsz = std::min((int)mat.rows(), std::max(batch_size_, min_allowed_bsz)); |
| 90 | + int number_of_batches = mat.rows() / bsz; |
| 91 | + int num_cols = mat.cols() - 1; |
| 92 | + |
| 93 | + std::vector<matrix_eig> y_batch, y_hat_batch; |
| 94 | + // Run through each batch and compute loss/apply backprop |
| 95 | + for (int batch_offset = 0; batch_offset < number_of_batches; |
| 96 | + ++batch_offset) { |
| 97 | + matrix_eig data_batch, target_batch; |
| 98 | + GetBatch(mat, batch_offset, bsz, data_batch, target_batch); |
| 99 | + |
| 100 | + std::vector<int64_t> dims_data{bsz, num_cols}; |
| 101 | + std::vector<int64_t> dims_target{bsz, 1}; |
| 102 | + |
| 103 | + Fit(data_batch, target_batch, bsz); |
| 104 | + |
| 105 | + matrix_eig y_hat_eig = Predict(data_batch, bsz); |
| 106 | + y_hat_batch.push_back(y_hat_eig); |
| 107 | + y_batch.push_back(target_batch); |
| 108 | + } |
| 109 | + matrix_eig y = EigenUtil::VStack(y_batch); |
| 110 | + matrix_eig y_hat = EigenUtil::VStack(y_hat_batch); |
| 111 | + return ModelUtil::MeanSqError(y, y_hat); |
| 112 | + |
| 113 | +} |
| 114 | + |
| 115 | +// x: [bsz, 2] |
| 116 | +// return: [bsz, 1] |
| 117 | +matrix_eig AugmentedNN::Predict(const matrix_eig &X, int bsz) const { |
| 118 | + auto data_batch = EigenUtil::Flatten(X); |
| 119 | + std::vector<int64_t> dims_data{bsz, X.cols()}; |
| 120 | + std::vector<int64_t> dims_target{bsz, 1}; |
| 121 | + |
| 122 | + std::vector<TfFloatIn *> inputs_predict{ |
| 123 | + new TfFloatIn(data_batch.data(), dims_data, "data_")}; |
| 124 | + auto output_predict = new TfFloatOut(dims_target, "pred_"); |
| 125 | + // Obtain predicted values |
| 126 | + auto out = tf_session_entity_->Eval(inputs_predict, output_predict); |
| 127 | + |
| 128 | + matrix_t y_hat; |
| 129 | + for (int res_idx = 0; res_idx < bsz; res_idx++) { |
| 130 | + vector_t res = {out[res_idx]}; |
| 131 | + y_hat.push_back(res); |
| 132 | + } |
| 133 | + std::for_each(inputs_predict.begin(), inputs_predict.end(), TFIO_Delete); |
| 134 | + TFIO_Delete(output_predict); |
| 135 | + return EigenUtil::ToEigenMat(y_hat); |
| 136 | +} |
| 137 | + |
| 138 | +float AugmentedNN::ValidateEpoch(const matrix_eig &mat) { |
| 139 | + // Obtain relevant metadata |
| 140 | + int min_allowed_bsz = 1; |
| 141 | + int bsz = std::min((int)mat.rows(), std::max(batch_size_, min_allowed_bsz)); |
| 142 | + int number_of_batches = mat.rows() / bsz; |
| 143 | + int num_cols = mat.cols() - 1; |
| 144 | + |
| 145 | + std::vector<matrix_eig> y_batch, y_hat_batch; |
| 146 | + // Apply Validation |
| 147 | + // Run through each batch and compute loss/apply backprop |
| 148 | + for (int batch_offset = 0; batch_offset < number_of_batches; |
| 149 | + ++batch_offset) { |
| 150 | + matrix_eig data_batch, target_batch; |
| 151 | + GetBatch(mat, batch_offset, bsz, data_batch, target_batch); |
| 152 | + |
| 153 | + std::vector<int64_t> dims_data{bsz, num_cols}; |
| 154 | + std::vector<int64_t> dims_target{bsz, 1}; |
| 155 | + |
| 156 | + matrix_eig y_hat_eig = Predict(data_batch, bsz); |
| 157 | + y_hat_batch.push_back(y_hat_eig); |
| 158 | + y_batch.push_back(target_batch); |
| 159 | + } |
| 160 | + matrix_eig y = EigenUtil::VStack(y_batch); |
| 161 | + matrix_eig y_hat = EigenUtil::VStack(y_hat_batch); |
| 162 | + return ModelUtil::MeanSqError(y, y_hat); |
| 163 | + |
| 164 | +} |
| 165 | +} // namespace brain |
| 166 | +} // namespace peloton |
| 167 | + |
0 commit comments