|
| 1 | +--- |
| 2 | +title: Academic Papers Indexing |
| 3 | +description: Build a real-time academic papers index. Extract metadata, chunk and embed abstracts, and enable semantic and author-based search over academic PDFs. |
| 4 | +sidebar_class_name: hidden |
| 5 | +slug: /examples/academic_papers_index |
| 6 | +canonicalUrl: '/examples/academic_papers_index' |
| 7 | +--- |
| 8 | + |
| 9 | +import { GitHubButton, YouTubeButton } from '../../../src/components/GitHubButton'; |
| 10 | + |
| 11 | +<GitHubButton url="https://github.com/cocoindex-io/cocoindex/tree/main/examples/paper_metadata"/> |
| 12 | + |
| 13 | + |
| 14 | +## What we will achieve |
| 15 | + |
| 16 | +1. Extract the paper metadata, including file name, title, author information, abstract, and number of pages. |
| 17 | + |
| 18 | +2. Build vector embeddings for the metadata, such as the title and abstract, for semantic search. |
| 19 | +This enables better metadata-driven semantic search results. For example, you can match text queries against titles and abstracts. |
| 20 | + |
| 21 | +3. Build an index of authors and all the file names associated with each author |
| 22 | +to answer questions like "Give me all the papers by Jeff Dean." |
| 23 | + |
| 24 | +4. If you want to perform full PDF embedding for the paper, you can extend the flow. |
| 25 | + |
| 26 | +## Core Components |
| 27 | + |
| 28 | +1. **PDF Preprocessing** |
| 29 | + - Reads PDFs using `pypdf` and extracts: |
| 30 | + - Total number of pages |
| 31 | + - First page content (used as a proxy for metadata-rich information) |
| 32 | + |
| 33 | +2. **Markdown Conversion** |
| 34 | + - Converts the first page to Markdown using [Marker](https://github.com/datalab-to/marker). |
| 35 | + |
| 36 | +3. **LLM-Powered Metadata Extraction** |
| 37 | + - Sends the first-page Markdown to GPT-4o using CocoIndex's `ExtractByLlm` function. |
| 38 | + - Extracted metadata includes: |
| 39 | + - `title` (string) |
| 40 | + - `authors` (with name, email, and affiliation) |
| 41 | + - `abstract` (string) |
| 42 | + |
| 43 | +4. **Semantic Embedding** |
| 44 | + - The title is embedded directly using the `all-MiniLM-L6-v2` model by the SentenceTransformer. |
| 45 | + - Abstracts are chunked based on semantic punctuation and token count, then each chunk is embedded individually. |
| 46 | + |
| 47 | +5. **Relational Data Collection** |
| 48 | + - Authors are unrolled and collected into an `author_papers` relation, enabling queries like: |
| 49 | + - Show all papers by X |
| 50 | + - Which co-authors worked with Y? |
| 51 | + |
| 52 | +## Setup |
| 53 | + |
| 54 | +- [Install PostgreSQL](https://cocoindex.io/docs/getting_started/installation#-install-postgres). |
| 55 | + CocoIndex uses PostgreSQL internally for incremental processing. |
| 56 | +- [Configure your OpenAI API key](https://cocoindex.io/docs/ai/llm#openai). |
| 57 | + Alternatively, we have native support for Gemini, Ollama, LiteLLM. Check out the [guide](https://cocoindex.io/docs/ai/llm#ollama). |
| 58 | + You can choose your favorite LLM provider and work completely on-premises. |
| 59 | + |
| 60 | +## Define Indexing Flow |
| 61 | + |
| 62 | +To better help you navigate what we will walk through, here is a flow diagram: |
| 63 | + |
| 64 | +1. Import a list of papers in PDF. |
| 65 | +2. For each file: |
| 66 | + - Extract the first page of the paper. |
| 67 | + - Convert the first page to Markdown. |
| 68 | + - Extract metadata (title, authors, abstract) from the first page. |
| 69 | + - Split the abstract into chunks, and compute embeddings for each chunk. |
| 70 | +3. Export to the following tables in Postgres with PGVector: |
| 71 | + - Metadata (title, authors, abstract) for each paper. |
| 72 | + - Author-to-paper mapping, for author-based query. |
| 73 | + - Embeddings for titles and abstract chunks, for semantic search. |
| 74 | + |
| 75 | +Let’s zoom in on the steps. |
| 76 | + |
| 77 | +### Import the Papers |
| 78 | + |
| 79 | +```python |
| 80 | +@cocoindex.flow_def(name="PaperMetadata") |
| 81 | +def paper_metadata_flow( |
| 82 | + flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope |
| 83 | +) -> None: |
| 84 | + data_scope["documents"] = flow_builder.add_source( |
| 85 | + cocoindex.sources.LocalFile(path="papers", binary=True), |
| 86 | + refresh_interval=datetime.timedelta(seconds=10), |
| 87 | + ) |
| 88 | +``` |
| 89 | + |
| 90 | +`flow_builder.add_source` will create a table with sub fields (`filename`, `content`), |
| 91 | +we can refer to the [documentation](https://cocoindex.io/docs/ops/sources) for more details. |
| 92 | + |
| 93 | +### Extract and collect metadata |
| 94 | + |
| 95 | +#### Extract first page for basic info |
| 96 | + |
| 97 | +Define a custom function to extract the first page and number of pages of the PDF. |
| 98 | + |
| 99 | +```python |
| 100 | +@dataclasses.dataclass |
| 101 | +class PaperBasicInfo: |
| 102 | + num_pages: int |
| 103 | + first_page: bytes |
| 104 | +``` |
| 105 | + |
| 106 | +```python |
| 107 | +@cocoindex.op.function() |
| 108 | +def extract_basic_info(content: bytes) -> PaperBasicInfo: |
| 109 | + """Extract the first pages of a PDF.""" |
| 110 | + reader = PdfReader(io.BytesIO(content)) |
| 111 | + |
| 112 | + output = io.BytesIO() |
| 113 | + writer = PdfWriter() |
| 114 | + writer.add_page(reader.pages[0]) |
| 115 | + writer.write(output) |
| 116 | + |
| 117 | + return PaperBasicInfo(num_pages=len(reader.pages), first_page=output.getvalue()) |
| 118 | + |
| 119 | +``` |
| 120 | + |
| 121 | +Now, plug this into your flow. |
| 122 | +We extract metadata from the first page to minimize processing cost, since the entire PDF can be very large. |
| 123 | + |
| 124 | +```python |
| 125 | +with data_scope["documents"].row() as doc: |
| 126 | + doc["basic_info"] = doc["content"].transform(extract_basic_info) |
| 127 | +``` |
| 128 | + |
| 129 | +After this step, you should have the basic info of each paper. |
| 130 | + |
| 131 | +### Parse basic info |
| 132 | + |
| 133 | +We will convert the first page to Markdown using Marker. |
| 134 | +Alternatively, you can easily plug in your favorite PDF parser, such as Docling. |
| 135 | + |
| 136 | +Define a marker converter function and cache it, since its initialization is resource-intensive. |
| 137 | +This ensures that the same converter instance is reused for different input files. |
| 138 | + |
| 139 | +```python |
| 140 | +@cache |
| 141 | +def get_marker_converter() -> PdfConverter: |
| 142 | + config_parser = ConfigParser({}) |
| 143 | + return PdfConverter( |
| 144 | + create_model_dict(), config=config_parser.generate_config_dict() |
| 145 | + ) |
| 146 | +``` |
| 147 | + |
| 148 | +Plug it into a custom function. |
| 149 | + |
| 150 | +```python |
| 151 | +@cocoindex.op.function(gpu=True, cache=True, behavior_version=1) |
| 152 | +def pdf_to_markdown(content: bytes) -> str: |
| 153 | + """Convert to Markdown.""" |
| 154 | + |
| 155 | + with tempfile.NamedTemporaryFile(delete=True, suffix=".pdf") as temp_file: |
| 156 | + temp_file.write(content) |
| 157 | + temp_file.flush() |
| 158 | + text, _, _ = text_from_rendered(get_marker_converter()(temp_file.name)) |
| 159 | + return text |
| 160 | +``` |
| 161 | + |
| 162 | +Pass it to your transform |
| 163 | + |
| 164 | +```python |
| 165 | +with data_scope["documents"].row() as doc: |
| 166 | + doc["first_page_md"] = doc["basic_info"]["first_page"].transform( |
| 167 | + pdf_to_markdown |
| 168 | + ) |
| 169 | +``` |
| 170 | + |
| 171 | +After this step, you should have the first page of each paper in Markdown format. |
| 172 | + |
| 173 | +#### Extract basic info with LLM |
| 174 | + |
| 175 | +Define a schema for LLM extraction. CocoIndex natively supports LLM-structured extraction with complex and nested schemas. |
| 176 | +If you are interested in learning more about nested schemas, refer to [this article](https://cocoindex.io/blogs/patient-intake-form-extraction-with-llm). |
| 177 | + |
| 178 | +```python |
| 179 | +@dataclasses.dataclass |
| 180 | +class PaperMetadata: |
| 181 | + """ |
| 182 | + Metadata for a paper. |
| 183 | + """ |
| 184 | + |
| 185 | + title: str |
| 186 | + authors: list[Author] |
| 187 | + abstract: str |
| 188 | + |
| 189 | +``` |
| 190 | + |
| 191 | +Plug it into the `ExtractByLlm` function. With a dataclass defined, CocoIndex will automatically parse the LLM response into the dataclass. |
| 192 | + |
| 193 | +```python |
| 194 | +doc["metadata"] = doc["first_page_md"].transform( |
| 195 | + cocoindex.functions.ExtractByLlm( |
| 196 | + llm_spec=cocoindex.LlmSpec( |
| 197 | + api_type=cocoindex.LlmApiType.OPENAI, model="gpt-4o" |
| 198 | + ), |
| 199 | + output_type=PaperMetadata, |
| 200 | + instruction="Please extract the metadata from the first page of the paper.", |
| 201 | + ) |
| 202 | +) |
| 203 | +``` |
| 204 | + |
| 205 | +After this step, you should have the metadata of each paper. |
| 206 | + |
| 207 | +#### Collect paper metadata |
| 208 | + |
| 209 | +```python |
| 210 | + paper_metadata = data_scope.add_collector() |
| 211 | + with data_scope["documents"].row() as doc: |
| 212 | + # ... process |
| 213 | + # Collect metadata |
| 214 | + paper_metadata.collect( |
| 215 | + filename=doc["filename"], |
| 216 | + title=doc["metadata"]["title"], |
| 217 | + authors=doc["metadata"]["authors"], |
| 218 | + abstract=doc["metadata"]["abstract"], |
| 219 | + num_pages=doc["basic_info"]["num_pages"], |
| 220 | + ) |
| 221 | +``` |
| 222 | + |
| 223 | +Just collect anything you need :) |
| 224 | + |
| 225 | +#### Collect `author` to `filename` information |
| 226 | +We’ve already extracted author list. Here we want to collect Author → Papers in a separate table to build a look up functionality. |
| 227 | +Simply collect by author. |
| 228 | + |
| 229 | +```python |
| 230 | +author_papers = data_scope.add_collector() |
| 231 | + |
| 232 | +with data_scope["documents"].row() as doc: |
| 233 | + with doc["metadata"]["authors"].row() as author: |
| 234 | + author_papers.collect( |
| 235 | + author_name=author["name"], |
| 236 | + filename=doc["filename"], |
| 237 | + ) |
| 238 | +``` |
| 239 | + |
| 240 | + |
| 241 | +### Compute and collect embeddings |
| 242 | + |
| 243 | +#### Title |
| 244 | + |
| 245 | +```python |
| 246 | +doc["title_embedding"] = doc["metadata"]["title"].transform( |
| 247 | + cocoindex.functions.SentenceTransformerEmbed( |
| 248 | + model="sentence-transformers/all-MiniLM-L6-v2" |
| 249 | + ) |
| 250 | +) |
| 251 | +``` |
| 252 | + |
| 253 | +#### Abstract |
| 254 | + |
| 255 | +Split abstract into chunks, embed each chunk and collect their embeddings. |
| 256 | +Sometimes the abstract could be very long. |
| 257 | + |
| 258 | +```python |
| 259 | +doc["abstract_chunks"] = doc["metadata"]["abstract"].transform( |
| 260 | + cocoindex.functions.SplitRecursively( |
| 261 | + custom_languages=[ |
| 262 | + cocoindex.functions.CustomLanguageSpec( |
| 263 | + language_name="abstract", |
| 264 | + separators_regex=[r"[.?!]+\s+", r"[:;]\s+", r",\s+", r"\s+"], |
| 265 | + ) |
| 266 | + ] |
| 267 | + ), |
| 268 | + language="abstract", |
| 269 | + chunk_size=500, |
| 270 | + min_chunk_size=200, |
| 271 | + chunk_overlap=150, |
| 272 | +) |
| 273 | +``` |
| 274 | + |
| 275 | +After this step, you should have the abstract chunks of each paper. |
| 276 | + |
| 277 | +Embed each chunk and collect their embeddings. |
| 278 | + |
| 279 | +```python |
| 280 | +with doc["abstract_chunks"].row() as chunk: |
| 281 | + chunk["embedding"] = chunk["text"].transform( |
| 282 | + cocoindex.functions.SentenceTransformerEmbed( |
| 283 | + model="sentence-transformers/all-MiniLM-L6-v2" |
| 284 | + ) |
| 285 | + ) |
| 286 | +``` |
| 287 | + |
| 288 | +After this step, you should have the embeddings of the abstract chunks of each paper. |
| 289 | + |
| 290 | +#### Collect embeddings |
| 291 | + |
| 292 | +```python |
| 293 | +metadata_embeddings = data_scope.add_collector() |
| 294 | + |
| 295 | +with data_scope["documents"].row() as doc: |
| 296 | + # ... process |
| 297 | + # collect title embedding |
| 298 | + metadata_embeddings.collect( |
| 299 | + id=cocoindex.GeneratedField.UUID, |
| 300 | + filename=doc["filename"], |
| 301 | + location="title", |
| 302 | + text=doc["metadata"]["title"], |
| 303 | + embedding=doc["title_embedding"], |
| 304 | + ) |
| 305 | + with doc["abstract_chunks"].row() as chunk: |
| 306 | + # ... process |
| 307 | + # collect abstract chunks embeddings |
| 308 | + metadata_embeddings.collect( |
| 309 | + id=cocoindex.GeneratedField.UUID, |
| 310 | + filename=doc["filename"], |
| 311 | + location="abstract", |
| 312 | + text=chunk["text"], |
| 313 | + embedding=chunk["embedding"], |
| 314 | + ) |
| 315 | +``` |
| 316 | + |
| 317 | +### Export |
| 318 | +Finally, we export the data to Postgres. |
| 319 | + |
| 320 | +```python |
| 321 | +paper_metadata.export( |
| 322 | + "paper_metadata", |
| 323 | + cocoindex.targets.Postgres(), |
| 324 | + primary_key_fields=["filename"], |
| 325 | +) |
| 326 | +author_papers.export( |
| 327 | + "author_papers", |
| 328 | + cocoindex.targets.Postgres(), |
| 329 | + primary_key_fields=["author_name", "filename"], |
| 330 | +) |
| 331 | +metadata_embeddings.export( |
| 332 | + "metadata_embeddings", |
| 333 | + cocoindex.targets.Postgres(), |
| 334 | + primary_key_fields=["id"], |
| 335 | + vector_indexes=[ |
| 336 | + cocoindex.VectorIndexDef( |
| 337 | + field_name="embedding", |
| 338 | + metric=cocoindex.VectorSimilarityMetric.COSINE_SIMILARITY, |
| 339 | + ) |
| 340 | + ], |
| 341 | +) |
| 342 | +``` |
| 343 | + |
| 344 | +In this example we use PGVector as embedding stores/ |
| 345 | +With CocoIndex, you can do one line switch on other supported Vector databases like Qdrant, see this [guide](https://cocoindex.io/docs/ops/targets#entry-oriented-targets) for more details. |
| 346 | +We aim to standardize interfaces and make it like assembling building blocks. |
| 347 | + |
| 348 | +## View in CocoInsight step by step |
| 349 | + |
| 350 | +You can walk through the project step by step in [CocoInsight](https://www.youtube.com/watch?v=MMrpUfUcZPk) to see |
| 351 | +exactly how each field is constructed and what happens behind the scenes. |
| 352 | + |
| 353 | +## Query the index |
| 354 | + |
| 355 | +You can refer to this section of [Text Embeddings](https://cocoindex.io/blogs/text-embeddings-101#3-query-the-index) about |
| 356 | +how to build query against embeddings. |
| 357 | +For now CocoIndex doesn't provide additional query interface. We can write SQL or rely on the query engine by the target storage. |
| 358 | + |
| 359 | +- Many databases already have optimized query implementations with their own best practices |
| 360 | +- The query space has excellent solutions for querying, reranking, and other search-related functionality. |
| 361 | + |
| 362 | +If you need assist with writing the query, please feel free to reach out to us at [Discord](https://discord.com/invite/zpA9S2DR7s). |
0 commit comments