|
| 1 | +""" |
| 2 | +Utilities to dump/load objects (for configs, specs). |
| 3 | +""" |
| 4 | + |
| 5 | +from __future__ import annotations |
| 6 | + |
| 7 | +import datetime |
| 8 | +import dataclasses |
| 9 | +from enum import Enum |
| 10 | +from typing import Any, Mapping, TypeVar, overload, get_origin |
| 11 | + |
| 12 | +import numpy as np |
| 13 | + |
| 14 | +from .typing import ( |
| 15 | + AnalyzedAnyType, |
| 16 | + AnalyzedBasicType, |
| 17 | + AnalyzedDictType, |
| 18 | + AnalyzedListType, |
| 19 | + AnalyzedStructType, |
| 20 | + AnalyzedTypeInfo, |
| 21 | + AnalyzedUnionType, |
| 22 | + EnrichedValueType, |
| 23 | + FieldSchema, |
| 24 | + analyze_type_info, |
| 25 | + encode_enriched_type, |
| 26 | + is_namedtuple_type, |
| 27 | + is_pydantic_model, |
| 28 | + extract_ndarray_elem_dtype, |
| 29 | +) |
| 30 | + |
| 31 | + |
| 32 | +T = TypeVar("T") |
| 33 | + |
| 34 | +try: |
| 35 | + import pydantic, pydantic_core |
| 36 | +except ImportError: |
| 37 | + pass |
| 38 | + |
| 39 | + |
| 40 | +def _get_auto_default_for_type( |
| 41 | + type_info: AnalyzedTypeInfo, |
| 42 | +) -> tuple[Any, bool]: |
| 43 | + """ |
| 44 | + Get an auto-default value for a type annotation if it's safe to do so. |
| 45 | +
|
| 46 | + Returns: |
| 47 | + A tuple of (default_value, is_supported) where: |
| 48 | + - default_value: The default value if auto-defaulting is supported |
| 49 | + - is_supported: True if auto-defaulting is supported for this type |
| 50 | + """ |
| 51 | + # Case 1: Nullable types (Optional[T] or T | None) |
| 52 | + if type_info.nullable: |
| 53 | + return None, True |
| 54 | + |
| 55 | + # Case 2: Table types (KTable or LTable) - check if it's a list or dict type |
| 56 | + if isinstance(type_info.variant, AnalyzedListType): |
| 57 | + return [], True |
| 58 | + elif isinstance(type_info.variant, AnalyzedDictType): |
| 59 | + return {}, True |
| 60 | + |
| 61 | + return None, False |
| 62 | + |
| 63 | + |
| 64 | +def dump_engine_object(v: Any) -> Any: |
| 65 | + """Recursively dump an object for engine. Engine side uses `Pythonized` to catch.""" |
| 66 | + if v is None: |
| 67 | + return None |
| 68 | + elif isinstance(v, EnrichedValueType): |
| 69 | + return v.encode() |
| 70 | + elif isinstance(v, FieldSchema): |
| 71 | + return v.encode() |
| 72 | + elif isinstance(v, type) or get_origin(v) is not None: |
| 73 | + return encode_enriched_type(v) |
| 74 | + elif isinstance(v, Enum): |
| 75 | + return v.value |
| 76 | + elif isinstance(v, datetime.timedelta): |
| 77 | + total_secs = v.total_seconds() |
| 78 | + secs = int(total_secs) |
| 79 | + nanos = int((total_secs - secs) * 1e9) |
| 80 | + return {"secs": secs, "nanos": nanos} |
| 81 | + elif is_namedtuple_type(type(v)): |
| 82 | + # Handle NamedTuple objects specifically to use dict format |
| 83 | + field_names = list(getattr(type(v), "_fields", ())) |
| 84 | + result = {} |
| 85 | + for name in field_names: |
| 86 | + val = getattr(v, name) |
| 87 | + result[name] = dump_engine_object(val) # Include all values, including None |
| 88 | + if hasattr(v, "kind") and "kind" not in result: |
| 89 | + result["kind"] = v.kind |
| 90 | + return result |
| 91 | + elif hasattr(v, "__dict__"): # for dataclass-like objects |
| 92 | + s = {} |
| 93 | + for k, val in v.__dict__.items(): |
| 94 | + if val is None: |
| 95 | + # Skip None values |
| 96 | + continue |
| 97 | + s[k] = dump_engine_object(val) |
| 98 | + if hasattr(v, "kind") and "kind" not in s: |
| 99 | + s["kind"] = v.kind |
| 100 | + return s |
| 101 | + elif isinstance(v, (list, tuple)): |
| 102 | + return [dump_engine_object(item) for item in v] |
| 103 | + elif isinstance(v, np.ndarray): |
| 104 | + return v.tolist() |
| 105 | + elif isinstance(v, dict): |
| 106 | + return {k: dump_engine_object(v) for k, v in v.items()} |
| 107 | + return v |
| 108 | + |
| 109 | + |
| 110 | +@overload |
| 111 | +def load_engine_object(expected_type: type[T], v: Any) -> T: ... |
| 112 | +@overload |
| 113 | +def load_engine_object(expected_type: Any, v: Any) -> Any: ... |
| 114 | +def load_engine_object(expected_type: Any, v: Any) -> Any: |
| 115 | + """Recursively load an object that was produced by dump_engine_object(). |
| 116 | +
|
| 117 | + Args: |
| 118 | + expected_type: The Python type annotation to reconstruct to. |
| 119 | + v: The engine-facing Pythonized object (e.g., dict/list/primitive) to convert. |
| 120 | +
|
| 121 | + Returns: |
| 122 | + A Python object matching the expected_type where possible. |
| 123 | + """ |
| 124 | + # Fast path |
| 125 | + if v is None: |
| 126 | + return None |
| 127 | + |
| 128 | + type_info = analyze_type_info(expected_type) |
| 129 | + variant = type_info.variant |
| 130 | + |
| 131 | + if type_info.core_type is EnrichedValueType: |
| 132 | + return EnrichedValueType.decode(v) |
| 133 | + if type_info.core_type is FieldSchema: |
| 134 | + return FieldSchema.decode(v) |
| 135 | + |
| 136 | + # Any or unknown → return as-is |
| 137 | + if isinstance(variant, AnalyzedAnyType) or type_info.base_type is Any: |
| 138 | + return v |
| 139 | + |
| 140 | + # Enum handling |
| 141 | + if isinstance(expected_type, type) and issubclass(expected_type, Enum): |
| 142 | + return expected_type(v) |
| 143 | + |
| 144 | + # TimeDelta special form {secs, nanos} |
| 145 | + if isinstance(variant, AnalyzedBasicType) and variant.kind == "TimeDelta": |
| 146 | + if isinstance(v, Mapping) and "secs" in v and "nanos" in v: |
| 147 | + secs = int(v["secs"]) # type: ignore[index] |
| 148 | + nanos = int(v["nanos"]) # type: ignore[index] |
| 149 | + return datetime.timedelta(seconds=secs, microseconds=nanos / 1_000) |
| 150 | + return v |
| 151 | + |
| 152 | + # List, NDArray (Vector-ish), or general sequences |
| 153 | + if isinstance(variant, AnalyzedListType): |
| 154 | + elem_type = variant.elem_type if variant.elem_type else Any |
| 155 | + if type_info.base_type is np.ndarray: |
| 156 | + # Reconstruct NDArray with appropriate dtype if available |
| 157 | + try: |
| 158 | + dtype = extract_ndarray_elem_dtype(type_info.core_type) |
| 159 | + except (TypeError, ValueError, AttributeError): |
| 160 | + dtype = None |
| 161 | + return np.array(v, dtype=dtype) |
| 162 | + # Regular Python list |
| 163 | + return [load_engine_object(elem_type, item) for item in v] |
| 164 | + |
| 165 | + # Dict / Mapping |
| 166 | + if isinstance(variant, AnalyzedDictType): |
| 167 | + key_t = variant.key_type |
| 168 | + val_t = variant.value_type |
| 169 | + return { |
| 170 | + load_engine_object(key_t, k): load_engine_object(val_t, val) |
| 171 | + for k, val in v.items() |
| 172 | + } |
| 173 | + |
| 174 | + # Structs (dataclass, NamedTuple, or Pydantic) |
| 175 | + if isinstance(variant, AnalyzedStructType): |
| 176 | + struct_type = variant.struct_type |
| 177 | + init_kwargs: dict[str, Any] = {} |
| 178 | + missing_fields: list[tuple[str, Any]] = [] |
| 179 | + if dataclasses.is_dataclass(struct_type): |
| 180 | + if not isinstance(v, Mapping): |
| 181 | + raise ValueError(f"Expected dict for dataclass, got {type(v)}") |
| 182 | + |
| 183 | + for dc_field in dataclasses.fields(struct_type): |
| 184 | + if dc_field.name in v: |
| 185 | + init_kwargs[dc_field.name] = load_engine_object( |
| 186 | + dc_field.type, v[dc_field.name] |
| 187 | + ) |
| 188 | + else: |
| 189 | + if ( |
| 190 | + dc_field.default is dataclasses.MISSING |
| 191 | + and dc_field.default_factory is dataclasses.MISSING |
| 192 | + ): |
| 193 | + missing_fields.append((dc_field.name, dc_field.type)) |
| 194 | + |
| 195 | + elif is_namedtuple_type(struct_type): |
| 196 | + if not isinstance(v, Mapping): |
| 197 | + raise ValueError(f"Expected dict for NamedTuple, got {type(v)}") |
| 198 | + # Dict format (from dump/load functions) |
| 199 | + annotations = getattr(struct_type, "__annotations__", {}) |
| 200 | + field_names = list(getattr(struct_type, "_fields", ())) |
| 201 | + field_defaults = getattr(struct_type, "_field_defaults", {}) |
| 202 | + |
| 203 | + for name in field_names: |
| 204 | + f_type = annotations.get(name, Any) |
| 205 | + if name in v: |
| 206 | + init_kwargs[name] = load_engine_object(f_type, v[name]) |
| 207 | + elif name not in field_defaults: |
| 208 | + missing_fields.append((name, f_type)) |
| 209 | + |
| 210 | + elif is_pydantic_model(struct_type): |
| 211 | + if not isinstance(v, Mapping): |
| 212 | + raise ValueError(f"Expected dict for Pydantic model, got {type(v)}") |
| 213 | + |
| 214 | + model_fields: dict[str, pydantic.fields.FieldInfo] |
| 215 | + if hasattr(struct_type, "model_fields"): |
| 216 | + model_fields = struct_type.model_fields # type: ignore[attr-defined] |
| 217 | + else: |
| 218 | + model_fields = {} |
| 219 | + |
| 220 | + for name, pyd_field in model_fields.items(): |
| 221 | + if name in v: |
| 222 | + init_kwargs[name] = load_engine_object( |
| 223 | + pyd_field.annotation, v[name] |
| 224 | + ) |
| 225 | + elif ( |
| 226 | + getattr(pyd_field, "default", pydantic_core.PydanticUndefined) |
| 227 | + is pydantic_core.PydanticUndefined |
| 228 | + and getattr(pyd_field, "default_factory") is None |
| 229 | + ): |
| 230 | + missing_fields.append((name, pyd_field.annotation)) |
| 231 | + else: |
| 232 | + assert False, "Unsupported struct type" |
| 233 | + |
| 234 | + for name, f_type in missing_fields: |
| 235 | + type_info = analyze_type_info(f_type) |
| 236 | + auto_default, is_supported = _get_auto_default_for_type(type_info) |
| 237 | + if is_supported: |
| 238 | + init_kwargs[name] = auto_default |
| 239 | + return struct_type(**init_kwargs) |
| 240 | + |
| 241 | + # Union with discriminator support via "kind" |
| 242 | + if isinstance(variant, AnalyzedUnionType): |
| 243 | + if isinstance(v, Mapping) and "kind" in v: |
| 244 | + discriminator = v["kind"] |
| 245 | + for typ in variant.variant_types: |
| 246 | + t_info = analyze_type_info(typ) |
| 247 | + if isinstance(t_info.variant, AnalyzedStructType): |
| 248 | + t_struct = t_info.variant.struct_type |
| 249 | + candidate_kind = getattr(t_struct, "kind", None) |
| 250 | + if candidate_kind == discriminator: |
| 251 | + # Remove discriminator for constructor |
| 252 | + v_wo_kind = dict(v) |
| 253 | + v_wo_kind.pop("kind", None) |
| 254 | + return load_engine_object(t_struct, v_wo_kind) |
| 255 | + # Fallback: try each variant until one succeeds |
| 256 | + for typ in variant.variant_types: |
| 257 | + try: |
| 258 | + return load_engine_object(typ, v) |
| 259 | + except (TypeError, ValueError): |
| 260 | + continue |
| 261 | + return v |
| 262 | + |
| 263 | + # Basic types and everything else: handle numpy scalars and passthrough |
| 264 | + if isinstance(v, np.ndarray) and type_info.base_type is list: |
| 265 | + return v.tolist() |
| 266 | + if isinstance(v, (list, tuple)) and type_info.base_type not in (list, tuple): |
| 267 | + # If a non-sequence basic type expected, attempt direct cast |
| 268 | + try: |
| 269 | + return type_info.core_type(v) |
| 270 | + except (TypeError, ValueError): |
| 271 | + return v |
| 272 | + return v |
0 commit comments