|
9 | 9 | }, |
10 | 10 | { |
11 | 11 | "cell_type": "code", |
12 | | - "execution_count": 169, |
13 | | - "metadata": { |
14 | | - "collapsed": true |
15 | | - }, |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
16 | 14 | "outputs": [], |
17 | 15 | "source": [ |
18 | 16 | "import pandas as pd" |
19 | 17 | ] |
20 | 18 | }, |
21 | 19 | { |
22 | 20 | "cell_type": "code", |
23 | | - "execution_count": 170, |
| 21 | + "execution_count": 2, |
24 | 22 | "metadata": { |
25 | 23 | "scrolled": true |
26 | 24 | }, |
|
101 | 99 | "4 google computer programmer bachelors 0" |
102 | 100 | ] |
103 | 101 | }, |
104 | | - "execution_count": 170, |
| 102 | + "execution_count": 2, |
105 | 103 | "metadata": {}, |
106 | 104 | "output_type": "execute_result" |
107 | 105 | } |
|
113 | 111 | }, |
114 | 112 | { |
115 | 113 | "cell_type": "code", |
116 | | - "execution_count": 171, |
| 114 | + "execution_count": 3, |
117 | 115 | "metadata": {}, |
118 | 116 | "outputs": [], |
119 | 117 | "source": [ |
|
122 | 120 | }, |
123 | 121 | { |
124 | 122 | "cell_type": "code", |
125 | | - "execution_count": 172, |
126 | | - "metadata": { |
127 | | - "collapsed": true |
128 | | - }, |
| 123 | + "execution_count": 4, |
| 124 | + "metadata": {}, |
129 | 125 | "outputs": [], |
130 | 126 | "source": [ |
131 | 127 | "target = df['salary_more_then_100k']" |
132 | 128 | ] |
133 | 129 | }, |
134 | 130 | { |
135 | 131 | "cell_type": "code", |
136 | | - "execution_count": 173, |
137 | | - "metadata": { |
138 | | - "collapsed": true |
139 | | - }, |
| 132 | + "execution_count": 5, |
| 133 | + "metadata": {}, |
140 | 134 | "outputs": [], |
141 | 135 | "source": [ |
142 | 136 | "from sklearn.preprocessing import LabelEncoder\n", |
|
147 | 141 | }, |
148 | 142 | { |
149 | 143 | "cell_type": "code", |
150 | | - "execution_count": 174, |
| 144 | + "execution_count": 6, |
151 | 145 | "metadata": {}, |
152 | 146 | "outputs": [], |
153 | 147 | "source": [ |
154 | 148 | "inputs['company_n'] = le_company.fit_transform(inputs['company'])\n", |
155 | | - "inputs['job_n'] = le_company.fit_transform(inputs['job'])\n", |
156 | | - "inputs['degree_n'] = le_company.fit_transform(inputs['degree'])" |
| 149 | + "inputs['job_n'] = le_job.fit_transform(inputs['job'])\n", |
| 150 | + "inputs['degree_n'] = le_degree.fit_transform(inputs['degree'])" |
157 | 151 | ] |
158 | 152 | }, |
159 | 153 | { |
160 | 154 | "cell_type": "code", |
161 | | - "execution_count": 175, |
| 155 | + "execution_count": 7, |
162 | 156 | "metadata": {}, |
163 | 157 | "outputs": [ |
164 | 158 | { |
|
359 | 353 | "15 facebook computer programmer masters 1 1 1" |
360 | 354 | ] |
361 | 355 | }, |
362 | | - "execution_count": 175, |
| 356 | + "execution_count": 7, |
363 | 357 | "metadata": {}, |
364 | 358 | "output_type": "execute_result" |
365 | 359 | } |
|
370 | 364 | }, |
371 | 365 | { |
372 | 366 | "cell_type": "code", |
373 | | - "execution_count": 176, |
374 | | - "metadata": { |
375 | | - "collapsed": true |
376 | | - }, |
| 367 | + "execution_count": 8, |
| 368 | + "metadata": {}, |
377 | 369 | "outputs": [], |
378 | 370 | "source": [ |
379 | 371 | "inputs_n = inputs.drop(['company','job','degree'],axis='columns')" |
380 | 372 | ] |
381 | 373 | }, |
382 | 374 | { |
383 | 375 | "cell_type": "code", |
384 | | - "execution_count": 177, |
| 376 | + "execution_count": 9, |
385 | 377 | "metadata": {}, |
386 | 378 | "outputs": [ |
387 | 379 | { |
|
531 | 523 | "15 1 1 1" |
532 | 524 | ] |
533 | 525 | }, |
534 | | - "execution_count": 177, |
| 526 | + "execution_count": 9, |
535 | 527 | "metadata": {}, |
536 | 528 | "output_type": "execute_result" |
537 | 529 | } |
|
542 | 534 | }, |
543 | 535 | { |
544 | 536 | "cell_type": "code", |
545 | | - "execution_count": 178, |
| 537 | + "execution_count": 10, |
546 | 538 | "metadata": { |
547 | 539 | "scrolled": true |
548 | 540 | }, |
|
569 | 561 | "Name: salary_more_then_100k, dtype: int64" |
570 | 562 | ] |
571 | 563 | }, |
572 | | - "execution_count": 178, |
| 564 | + "execution_count": 10, |
573 | 565 | "metadata": {}, |
574 | 566 | "output_type": "execute_result" |
575 | 567 | } |
|
580 | 572 | }, |
581 | 573 | { |
582 | 574 | "cell_type": "code", |
583 | | - "execution_count": 179, |
584 | | - "metadata": { |
585 | | - "collapsed": true |
586 | | - }, |
| 575 | + "execution_count": 11, |
| 576 | + "metadata": {}, |
587 | 577 | "outputs": [], |
588 | 578 | "source": [ |
589 | 579 | "from sklearn import tree\n", |
|
592 | 582 | }, |
593 | 583 | { |
594 | 584 | "cell_type": "code", |
595 | | - "execution_count": 180, |
| 585 | + "execution_count": 12, |
596 | 586 | "metadata": {}, |
597 | 587 | "outputs": [ |
598 | 588 | { |
599 | 589 | "data": { |
600 | 590 | "text/plain": [ |
601 | 591 | "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", |
602 | 592 | " max_features=None, max_leaf_nodes=None,\n", |
603 | | - " min_impurity_split=1e-07, min_samples_leaf=1,\n", |
604 | | - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", |
605 | | - " presort=False, random_state=None, splitter='best')" |
| 593 | + " min_impurity_decrease=0.0, min_impurity_split=None,\n", |
| 594 | + " min_samples_leaf=1, min_samples_split=2,\n", |
| 595 | + " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n", |
| 596 | + " splitter='best')" |
606 | 597 | ] |
607 | 598 | }, |
608 | | - "execution_count": 180, |
| 599 | + "execution_count": 12, |
609 | 600 | "metadata": {}, |
610 | 601 | "output_type": "execute_result" |
611 | 602 | } |
|
616 | 607 | }, |
617 | 608 | { |
618 | 609 | "cell_type": "code", |
619 | | - "execution_count": 181, |
| 610 | + "execution_count": 13, |
620 | 611 | "metadata": {}, |
621 | 612 | "outputs": [ |
622 | 613 | { |
|
625 | 616 | "1.0" |
626 | 617 | ] |
627 | 618 | }, |
628 | | - "execution_count": 181, |
| 619 | + "execution_count": 13, |
629 | 620 | "metadata": {}, |
630 | 621 | "output_type": "execute_result" |
631 | 622 | } |
|
643 | 634 | }, |
644 | 635 | { |
645 | 636 | "cell_type": "code", |
646 | | - "execution_count": 182, |
| 637 | + "execution_count": 14, |
647 | 638 | "metadata": { |
648 | 639 | "scrolled": true |
649 | 640 | }, |
|
654 | 645 | "array([0], dtype=int64)" |
655 | 646 | ] |
656 | 647 | }, |
657 | | - "execution_count": 182, |
| 648 | + "execution_count": 14, |
658 | 649 | "metadata": {}, |
659 | 650 | "output_type": "execute_result" |
660 | 651 | } |
|
672 | 663 | }, |
673 | 664 | { |
674 | 665 | "cell_type": "code", |
675 | | - "execution_count": 183, |
| 666 | + "execution_count": 15, |
676 | 667 | "metadata": { |
677 | 668 | "scrolled": true |
678 | 669 | }, |
|
683 | 674 | "array([1], dtype=int64)" |
684 | 675 | ] |
685 | 676 | }, |
686 | | - "execution_count": 183, |
| 677 | + "execution_count": 15, |
687 | 678 | "metadata": {}, |
688 | 679 | "output_type": "execute_result" |
689 | 680 | } |
|
709 | 700 | "name": "python", |
710 | 701 | "nbconvert_exporter": "python", |
711 | 702 | "pygments_lexer": "ipython3", |
712 | | - "version": "3.6.1" |
| 703 | + "version": "3.7.3" |
713 | 704 | } |
714 | 705 | }, |
715 | 706 | "nbformat": 4, |
|
0 commit comments