|
62 | 62 | }, |
63 | 63 | { |
64 | 64 | "cell_type": "code", |
65 | | - "execution_count": 44, |
66 | | - "metadata": { |
67 | | - "collapsed": true |
68 | | - }, |
| 65 | + "execution_count": 1, |
| 66 | + "metadata": {}, |
69 | 67 | "outputs": [], |
70 | 68 | "source": [ |
71 | 69 | "import pandas as pd\n", |
|
75 | 73 | }, |
76 | 74 | { |
77 | 75 | "cell_type": "code", |
78 | | - "execution_count": 45, |
| 76 | + "execution_count": 2, |
79 | 77 | "metadata": { |
80 | 78 | "scrolled": true |
81 | 79 | }, |
|
164 | 162 | "5 4100 6.0 8 810000" |
165 | 163 | ] |
166 | 164 | }, |
167 | | - "execution_count": 45, |
| 165 | + "execution_count": 2, |
168 | 166 | "metadata": {}, |
169 | 167 | "output_type": "execute_result" |
170 | 168 | } |
|
183 | 181 | }, |
184 | 182 | { |
185 | 183 | "cell_type": "code", |
186 | | - "execution_count": 46, |
187 | | - "metadata": { |
188 | | - "collapsed": true |
189 | | - }, |
190 | | - "outputs": [], |
191 | | - "source": [ |
192 | | - "import math\n", |
193 | | - "med_bedrooms = math.floor(df.bedrooms.median())" |
194 | | - ] |
195 | | - }, |
196 | | - { |
197 | | - "cell_type": "code", |
198 | | - "execution_count": 47, |
199 | | - "metadata": { |
200 | | - "collapsed": true |
201 | | - }, |
202 | | - "outputs": [], |
| 184 | + "execution_count": 3, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "data": { |
| 189 | + "text/plain": [ |
| 190 | + "4.0" |
| 191 | + ] |
| 192 | + }, |
| 193 | + "execution_count": 3, |
| 194 | + "metadata": {}, |
| 195 | + "output_type": "execute_result" |
| 196 | + } |
| 197 | + ], |
203 | 198 | "source": [ |
204 | | - "df.bedrooms = df.bedrooms.fillna(med_bedrooms)" |
| 199 | + "df.bedrooms.median()" |
205 | 200 | ] |
206 | 201 | }, |
207 | 202 | { |
208 | 203 | "cell_type": "code", |
209 | | - "execution_count": 48, |
| 204 | + "execution_count": 5, |
210 | 205 | "metadata": {}, |
211 | 206 | "outputs": [ |
212 | 207 | { |
|
293 | 288 | "5 4100 6.0 8 810000" |
294 | 289 | ] |
295 | 290 | }, |
296 | | - "execution_count": 48, |
| 291 | + "execution_count": 5, |
297 | 292 | "metadata": {}, |
298 | 293 | "output_type": "execute_result" |
299 | 294 | } |
300 | 295 | ], |
301 | 296 | "source": [ |
| 297 | + "df.bedrooms = df.bedrooms.fillna(df.bedrooms.median())\n", |
302 | 298 | "df" |
303 | 299 | ] |
304 | 300 | }, |
305 | 301 | { |
306 | 302 | "cell_type": "code", |
307 | | - "execution_count": 49, |
| 303 | + "execution_count": 6, |
308 | 304 | "metadata": { |
309 | 305 | "scrolled": true |
310 | 306 | }, |
311 | 307 | "outputs": [ |
312 | 308 | { |
313 | 309 | "data": { |
314 | 310 | "text/plain": [ |
315 | | - "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)" |
| 311 | + "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,\n", |
| 312 | + " normalize=False)" |
316 | 313 | ] |
317 | 314 | }, |
318 | | - "execution_count": 49, |
| 315 | + "execution_count": 6, |
319 | 316 | "metadata": {}, |
320 | 317 | "output_type": "execute_result" |
321 | 318 | } |
322 | 319 | ], |
323 | 320 | "source": [ |
324 | 321 | "reg = linear_model.LinearRegression()\n", |
325 | | - "reg.fit(df[['area','bedrooms','age']],df.price)" |
| 322 | + "reg.fit(df.drop('price',axis='columns'),df.price)" |
326 | 323 | ] |
327 | 324 | }, |
328 | 325 | { |
329 | 326 | "cell_type": "code", |
330 | | - "execution_count": 50, |
| 327 | + "execution_count": 7, |
331 | 328 | "metadata": {}, |
332 | 329 | "outputs": [ |
333 | 330 | { |
334 | 331 | "data": { |
335 | 332 | "text/plain": [ |
336 | | - "array([ 112.06244194, 23388.88007794, -3231.71790863])" |
| 333 | + "array([ 112.06244194, 23388.88007794, -3231.71790863])" |
337 | 334 | ] |
338 | 335 | }, |
339 | | - "execution_count": 50, |
| 336 | + "execution_count": 7, |
340 | 337 | "metadata": {}, |
341 | 338 | "output_type": "execute_result" |
342 | 339 | } |
|
347 | 344 | }, |
348 | 345 | { |
349 | 346 | "cell_type": "code", |
350 | | - "execution_count": 51, |
| 347 | + "execution_count": 8, |
351 | 348 | "metadata": { |
352 | 349 | "scrolled": true |
353 | 350 | }, |
354 | 351 | "outputs": [ |
355 | 352 | { |
356 | 353 | "data": { |
357 | 354 | "text/plain": [ |
358 | | - "221323.00186540384" |
| 355 | + "221323.00186540408" |
359 | 356 | ] |
360 | 357 | }, |
361 | | - "execution_count": 51, |
| 358 | + "execution_count": 8, |
362 | 359 | "metadata": {}, |
363 | 360 | "output_type": "execute_result" |
364 | 361 | } |
|
376 | 373 | }, |
377 | 374 | { |
378 | 375 | "cell_type": "code", |
379 | | - "execution_count": 52, |
| 376 | + "execution_count": 9, |
380 | 377 | "metadata": {}, |
381 | 378 | "outputs": [ |
382 | 379 | { |
383 | 380 | "data": { |
384 | 381 | "text/plain": [ |
385 | | - "array([ 498408.25158031])" |
| 382 | + "array([498408.25158031])" |
386 | 383 | ] |
387 | 384 | }, |
388 | | - "execution_count": 52, |
| 385 | + "execution_count": 9, |
389 | 386 | "metadata": {}, |
390 | 387 | "output_type": "execute_result" |
391 | 388 | } |
|
396 | 393 | }, |
397 | 394 | { |
398 | 395 | "cell_type": "code", |
399 | | - "execution_count": 55, |
| 396 | + "execution_count": 10, |
400 | 397 | "metadata": { |
401 | 398 | "scrolled": true |
402 | 399 | }, |
|
407 | 404 | "498408.25157402386" |
408 | 405 | ] |
409 | 406 | }, |
410 | | - "execution_count": 55, |
| 407 | + "execution_count": 10, |
411 | 408 | "metadata": {}, |
412 | 409 | "output_type": "execute_result" |
413 | 410 | } |
|
425 | 422 | }, |
426 | 423 | { |
427 | 424 | "cell_type": "code", |
428 | | - "execution_count": 54, |
| 425 | + "execution_count": 11, |
429 | 426 | "metadata": {}, |
430 | 427 | "outputs": [ |
431 | 428 | { |
432 | 429 | "data": { |
433 | 430 | "text/plain": [ |
434 | | - "array([ 578876.03748933])" |
| 431 | + "array([578876.03748933])" |
435 | 432 | ] |
436 | 433 | }, |
437 | | - "execution_count": 54, |
| 434 | + "execution_count": 11, |
438 | 435 | "metadata": {}, |
439 | 436 | "output_type": "execute_result" |
440 | 437 | } |
|
493 | 490 | "name": "python", |
494 | 491 | "nbconvert_exporter": "python", |
495 | 492 | "pygments_lexer": "ipython3", |
496 | | - "version": "3.6.1" |
| 493 | + "version": "3.7.3" |
497 | 494 | } |
498 | 495 | }, |
499 | 496 | "nbformat": 4, |
|
0 commit comments