Skip to content

Commit cc4ad95

Browse files
authored
Update analyze-twitch-data-with-sqlite.mdx
1 parent dccf59c commit cc4ad95

File tree

1 file changed

+7
-19
lines changed

1 file changed

+7
-19
lines changed

projects/analyze-twitch-data-with-sqlite/analyze-twitch-data-with-sqlite.mdx

Lines changed: 7 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -218,25 +218,11 @@ So usually, I like to start by selecting the first 10-20 rows from the table to
218218

219219
```
220220
SELECT *
221-
FROM streams
221+
FROM streamers2021
222222
LIMIT 20;
223223
```
224224

225-
`stream` has the following columns:
226-
227-
- `time`
228-
- `device_id`
229-
- `login`
230-
- `channel`
231-
- `country`
232-
- `player`
233-
- `game`
234-
- `stream_format`
235-
- `subscriber`
236-
237-
The output should look something like this:
238-
239-
[screenshot image]
225+
Which we've already done.
240226

241227
### Languages
242228

@@ -274,6 +260,11 @@ The results should look like:
274260

275261
For `streamers2024` table, you can do distinct games:
276262

263+
```sql
264+
SELECT DISTINCT most_streamed_game
265+
FROM streamers;
266+
```
267+
277268
- League of Legends
278269
- DayZ
279270
- Dota 2
@@ -283,9 +274,6 @@ For `streamers2024` table, you can do distinct games:
283274
- The Binding of Isaac: Rebirth
284275
- etc.
285276

286-
###
287-
288-
289277
## Using Aggregate Functions
290278

291279
Now it’s a good time to write down the questions that we have.

0 commit comments

Comments
 (0)