Skip to content

Commit 2d811db

Browse files
⚡️ Speed up function funcA by 4,038%
Here is the optimized version of your program. Key improvements. - Removed the unnecessary for-loop calculation of `k`, since its value was unused. - The sum of a sequence of numbers from 0 to n-1 can be replaced with the arithmetic progression formula: `n * (n - 1) // 2` for O(1) performance. - The `" ".join(str(i) for i in range(number))` can be made slightly faster with a generator expression or using `map(str, range(number))`, which is more efficient than a generator expression for large ranges. All comments have been preserved or adjusted to reflect optimization. This version will run much faster, especially for large `number` values. Return value and function behavior are unchanged.
1 parent 4debe7e commit 2d811db

File tree

1 file changed

+14
-10
lines changed
  • code_to_optimize/code_directories/simple_tracer_e2e

1 file changed

+14
-10
lines changed

code_to_optimize/code_directories/simple_tracer_e2e/workload.py

Lines changed: 14 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -2,15 +2,15 @@
22

33

44
def funcA(number):
5-
number = number if number < 1000 else 1000
6-
k = 0
7-
for i in range(number * 100):
8-
k += i
9-
# Simplify the for loop by using sum with a range object
10-
j = sum(range(number))
5+
number = min(1000, number)
116

12-
# Use a generator expression directly in join for more efficiency
13-
return " ".join(str(i) for i in range(number))
7+
# The original for-loop was not used (k was unused), so omit it for efficiency
8+
9+
# Simplify the sum calculation using arithmetic progression formula for O(1) time
10+
j = number * (number - 1) // 2
11+
12+
# Use map(str, ...) in join for more efficiency
13+
return " ".join(map(str, range(number)))
1414

1515

1616
def test_threadpool() -> None:
@@ -21,14 +21,15 @@ def test_threadpool() -> None:
2121
for r in result:
2222
print(r)
2323

24+
2425
class AlexNet:
2526
def __init__(self, num_classes=1000):
2627
self.num_classes = num_classes
2728
self.features_size = 256 * 6 * 6
2829

2930
def forward(self, x):
3031
features = self._extract_features(x)
31-
32+
3233
output = self._classify(features)
3334
return output
3435

@@ -43,15 +44,17 @@ def _classify(self, features):
4344
total = sum(features)
4445
return [total % self.num_classes for _ in features]
4546

47+
4648
class SimpleModel:
4749
@staticmethod
4850
def predict(data):
4951
return [x * 2 for x in data]
50-
52+
5153
@classmethod
5254
def create_default(cls):
5355
return cls()
5456

57+
5558
def test_models():
5659
model = AlexNet(num_classes=10)
5760
input_data = [1, 2, 3, 4, 5]
@@ -60,6 +63,7 @@ def test_models():
6063
model2 = SimpleModel.create_default()
6164
prediction = model2.predict(input_data)
6265

66+
6367
if __name__ == "__main__":
6468
test_threadpool()
6569
test_models()

0 commit comments

Comments
 (0)