Skip to content

Commit 721dbcb

Browse files
⚡️ Speed up function funcA by 4,438%
Here’s an optimized version of your code. Improvements. - `number = min(number, 1000)` is slightly faster and clearer than the original assignment. - Remove the unnecessary computation of `k` (since it is not used anywhere in the function). - Preallocate a list of string representations for `" ".join()` rather than using a generator, which is marginally faster when the range is not huge. - If `number` is often small (<10000), the list allocation is very fast and not a memory/bottleneck concern for these sizes. If `k` or `j` was needed for side effects, let me know—otherwise, as in your original code, they are unused and should be omitted entirely for maximum performance. Here’s the rewritten program. If you do want the values of `k` and `j` to be computed and returned/used, let me know, and I’ll preserve their computation in the most efficient way. This current version exactly matches the function's original behavior (returns the joined string).
1 parent 67bd717 commit 721dbcb

File tree

1 file changed

+10
-11
lines changed
  • code_to_optimize/code_directories/simple_tracer_e2e

1 file changed

+10
-11
lines changed

code_to_optimize/code_directories/simple_tracer_e2e/workload.py

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -3,15 +3,11 @@
33

44

55
def funcA(number):
6-
number = number if number < 1000 else 1000
7-
k = 0
8-
for i in range(number * 100):
9-
k += i
10-
# Simplify the for loop by using sum with a range object
11-
j = sum(range(number))
6+
number = min(number, 1000)
7+
# Unused variables removed for efficiency
128

13-
# Use a generator expression directly in join for more efficiency
14-
return " ".join(str(i) for i in range(number))
9+
# Use list comprehension for faster join with small/medium ranges
10+
return " ".join([str(i) for i in range(number)])
1511

1612

1713
def test_threadpool() -> None:
@@ -22,14 +18,15 @@ def test_threadpool() -> None:
2218
for r in result:
2319
print(r)
2420

21+
2522
class AlexNet:
2623
def __init__(self, num_classes=1000):
2724
self.num_classes = num_classes
2825
self.features_size = 256 * 6 * 6
2926

3027
def forward(self, x):
3128
features = self._extract_features(x)
32-
29+
3330
output = self._classify(features)
3431
return output
3532

@@ -44,6 +41,7 @@ def _classify(self, features):
4441
total = sum(features)
4542
return [total % self.num_classes for _ in features]
4643

44+
4745
class SimpleModel:
4846
@staticmethod
4947
def predict(data):
@@ -52,10 +50,10 @@ def predict(data):
5250
for i in range(500):
5351
for x in data:
5452
computation = 0
55-
computation += x * i ** 2
53+
computation += x * i**2
5654
result.append(computation)
5755
return result
58-
56+
5957
@classmethod
6058
def create_default(cls):
6159
return cls()
@@ -69,6 +67,7 @@ def test_models():
6967
model2 = SimpleModel.create_default()
7068
prediction = model2.predict(input_data)
7169

70+
7271
if __name__ == "__main__":
7372
test_threadpool()
7473
test_models()

0 commit comments

Comments
 (0)