|
1 | 1 | import torch |
2 | | -import torch.nn as nn |
| 2 | +from torch import nn |
3 | 3 |
|
4 | | -class AlexNet(nn.Module): |
5 | 4 |
|
6 | | - def __init__(self, num_classes: int=1000, dropout: float=0.5) -> None: |
| 5 | +class AlexNet(nn.Module): |
| 6 | + def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: |
7 | 7 | super().__init__() |
8 | | - self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2)) |
| 8 | + self.features = nn.Sequential( |
| 9 | + nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
| 10 | + nn.ReLU(inplace=True), |
| 11 | + nn.MaxPool2d(kernel_size=3, stride=2), |
| 12 | + nn.Conv2d(64, 192, kernel_size=5, padding=2), |
| 13 | + nn.ReLU(inplace=True), |
| 14 | + nn.MaxPool2d(kernel_size=3, stride=2), |
| 15 | + nn.Conv2d(192, 384, kernel_size=3, padding=1), |
| 16 | + nn.ReLU(inplace=True), |
| 17 | + nn.Conv2d(384, 256, kernel_size=3, padding=1), |
| 18 | + nn.ReLU(inplace=True), |
| 19 | + nn.Conv2d(256, 256, kernel_size=3, padding=1), |
| 20 | + nn.ReLU(inplace=True), |
| 21 | + nn.MaxPool2d(kernel_size=3, stride=2), |
| 22 | + ) |
9 | 23 | self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) |
10 | | - self.classifier = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=False), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=False), nn.Linear(4096, num_classes)) |
| 24 | + self.classifier = nn.Sequential( |
| 25 | + nn.Dropout(p=dropout), |
| 26 | + nn.Linear(256 * 6 * 6, 4096), |
| 27 | + nn.ReLU(inplace=False), |
| 28 | + nn.Dropout(p=dropout), |
| 29 | + nn.Linear(4096, 4096), |
| 30 | + nn.ReLU(inplace=False), |
| 31 | + nn.Linear(4096, num_classes), |
| 32 | + ) |
11 | 33 |
|
12 | 34 | def classifier_forward(self, x: torch.Tensor): |
13 | 35 | return self.classifier(x) |
14 | 36 |
|
15 | 37 | def forward(self, x: torch.Tensor) -> torch.Tensor: |
| 38 | + # Main speedup: use .view() instead of torch.flatten to save overhead |
16 | 39 | x = self.features(x) |
17 | 40 | x = self.avgpool(x) |
18 | | - x = torch.flatten(x, 1) |
19 | | - return self.classifier_forward(x) |
| 41 | + x = x.view(x.size(0), -1) |
| 42 | + # Directly call self.classifier(x) to avoid an unnecessary function call |
| 43 | + return self.classifier(x) |
0 commit comments