Skip to content

Commit d337126

Browse files
committed
first version with tracin
1 parent 8b2b37a commit d337126

File tree

4 files changed

+58
-1
lines changed

4 files changed

+58
-1
lines changed

codeflash/discovery/discover_unit_tests.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -322,6 +322,7 @@ def filter_test_files_by_imports(
322322
"""
323323
if not target_functions:
324324
return file_to_test_map
325+
return file_to_test_map # added as a temporary fix, can be removed
325326

326327
logger.debug(f"Target functions for import filtering: {target_functions}")
327328

codeflash/model.py

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,19 @@
1+
import torch
2+
import torch.nn as nn
3+
4+
class AlexNet(nn.Module):
5+
6+
def __init__(self, num_classes: int=1000, dropout: float=0.5) -> None:
7+
super().__init__()
8+
self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2))
9+
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
10+
self.classifier = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=False), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=False), nn.Linear(4096, num_classes))
11+
12+
def classifier_forward(self, x: torch.Tensor):
13+
return self.classifier(x)
14+
15+
def forward(self, x: torch.Tensor) -> torch.Tensor:
16+
x = self.features(x)
17+
x = self.avgpool(x)
18+
x = torch.flatten(x, 1)
19+
return self.classifier_forward(x)

codeflash/model_run.py

Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
from PIL import Image
2+
import urllib
3+
from torchvision import transforms
4+
import torch
5+
6+
from codeflash.tracer import Tracer
7+
from codeflash.model import AlexNet
8+
9+
def load_model():
10+
model = AlexNet()
11+
model.load_state_dict(torch.load('alexnet-owt-7be5be79.pth'))
12+
model.eval()
13+
return model
14+
15+
def download_image():
16+
url, filename = ('https://github.com/pytorch/hub/raw/master/images/dog.jpg', 'dog.jpg')
17+
try:
18+
urllib.URLopener().retrieve(url, filename)
19+
except:
20+
urllib.request.urlretrieve(url, filename)
21+
22+
download_image()
23+
model = load_model()
24+
input_image = Image.open('dog.jpg')
25+
preprocess = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
26+
input_tensor = preprocess(input_image)
27+
input_batch = input_tensor.unsqueeze(0)
28+
if torch.cuda.is_available():
29+
input_batch = input_batch.to('cuda')
30+
model.to('cuda')
31+
print('YESS')
32+
with Tracer():
33+
with torch.no_grad():
34+
output = model(input_batch)
35+
print(output[0].shape)
36+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
37+
print(probabilities.shape)

codeflash/optimization/function_optimizer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -908,7 +908,7 @@ def generate_tests_and_optimizations(
908908
function_to_concolic_tests, concolic_test_str = future_concolic_tests.result()
909909
logger.info(f"Generated {len(tests)} tests for {self.function_to_optimize.function_name}")
910910
console.rule()
911-
generated_tests = GeneratedTestsList(generated_tests=tests)
911+
generated_tests = GeneratedTestsList(generated_tests=[])
912912

913913
return Success(
914914
(

0 commit comments

Comments
 (0)