diff --git a/code_to_optimize/code_directories/simple_tracer_e2e/workload.py b/code_to_optimize/code_directories/simple_tracer_e2e/workload.py index eddf37e0d..bd8988fd2 100644 --- a/code_to_optimize/code_directories/simple_tracer_e2e/workload.py +++ b/code_to_optimize/code_directories/simple_tracer_e2e/workload.py @@ -3,15 +3,11 @@ def funcA(number): - number = number if number < 1000 else 1000 - k = 0 - for i in range(number * 100): - k += i - # Simplify the for loop by using sum with a range object - j = sum(range(number)) + number = min(number, 1000) + # Unused variables removed for efficiency - # Use a generator expression directly in join for more efficiency - return " ".join(str(i) for i in range(number)) + # Use list comprehension for faster join with small/medium ranges + return " ".join([str(i) for i in range(number)]) def test_threadpool() -> None: @@ -22,6 +18,7 @@ def test_threadpool() -> None: for r in result: print(r) + class AlexNet: def __init__(self, num_classes=1000): self.num_classes = num_classes @@ -29,7 +26,7 @@ def __init__(self, num_classes=1000): def forward(self, x): features = self._extract_features(x) - + output = self._classify(features) return output @@ -44,6 +41,7 @@ def _classify(self, features): total = sum(features) return [total % self.num_classes for _ in features] + class SimpleModel: @staticmethod def predict(data): @@ -52,10 +50,10 @@ def predict(data): for i in range(500): for x in data: computation = 0 - computation += x * i ** 2 + computation += x * i**2 result.append(computation) return result - + @classmethod def create_default(cls): return cls() @@ -69,6 +67,7 @@ def test_models(): model2 = SimpleModel.create_default() prediction = model2.predict(input_data) + if __name__ == "__main__": test_threadpool() test_models()