Skip to content

Conversation

@codeflash-ai-dev
Copy link

📄 45,504% (455.04x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 419 milliseconds 920 microseconds (best of 962 runs)

📊 Benchmark Performance Details
Benchmark Name Original Timing Expected New Timing Speedup
test_benchmark_bubble_sort.py::test_sort 7.85 milliseconds 4.70 microseconds 166773.07%
test_process_and_sort.py::test_compute_and_sort 19.4 milliseconds 11.5 milliseconds 69.60%
test_process_and_sort.py::test_no_func 7.95 milliseconds 6.88 microseconds 115521.45%
📝 Explanation and details

You can optimize the sorting part of the code by using a more efficient sorting algorithm such as Timsort, which is the default sorting algorithm in Python's sorted() and sort() methods. This way, the function will run much faster, especially for larger lists. Here's the rewritten program.

The arr.sort() method is highly optimized and will generally perform much better than the original bubble sort implementation. The corrected implementation preserves the original structure by keeping the print statements and return value unchanged.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 46 Passed
⏪ Replay Tests 36 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_empty_list():
    # Test sorting an empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test sorting a list with a single element
    codeflash_output = sorter([1])

def test_already_sorted_list():
    # Test sorting a list that is already sorted
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([-3, -2, -1, 0, 1])

def test_reverse_sorted_list():
    # Test sorting a list that is sorted in reverse order
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([10, 5, 0, -5, -10])

def test_unsorted_list():
    # Test sorting a list with random order
    codeflash_output = sorter([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
    codeflash_output = sorter([10, -1, 2, -3, 4, 0])

def test_list_with_duplicates():
    # Test sorting a list with duplicate elements
    codeflash_output = sorter([2, 3, 2, 1, 1, 3])
    codeflash_output = sorter([5, 5, 5, 5, 5])

def test_list_with_all_negative_elements():
    # Test sorting a list with all negative numbers
    codeflash_output = sorter([-5, -1, -3, -2, -4])

def test_list_with_floats():
    # Test sorting a list with floating point numbers
    codeflash_output = sorter([1.1, 3.3, 2.2, 5.5, 4.4])
    codeflash_output = sorter([0.1, -0.1, 0.0, -0.2, 0.2])

def test_large_list():
    # Test sorting a large list
    codeflash_output = sorter([i for i in range(1000, 0, -1)])
    codeflash_output = sorter([i * (-1) ** i for i in range(1000)])

def test_list_with_mixed_data_types():
    # Test sorting a list with mixed data types (should raise TypeError)
    with pytest.raises(TypeError):
        sorter([1, '2', 3, '4', 5])

def test_edge_cases_with_special_values():
    # Test sorting a list with special values like infinity and NaN
    codeflash_output = sorter([float('inf'), 1, 2, float('-inf'), 3])
    codeflash_output = sorter([float('nan'), 1, 2, 3])  # Note: NaN is not comparable, so its position may vary
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating random test data

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_sorter_basic():
    # Test single element list
    codeflash_output = sorter([1])
    codeflash_output = sorter(["a"])
    
    # Test two elements list
    codeflash_output = sorter([2, 1])
    codeflash_output = sorter(["b", "a"])
    
    # Test already sorted list
    codeflash_output = sorter([1, 2, 3])
    codeflash_output = sorter(["a", "b", "c"])
    
    # Test reverse sorted list
    codeflash_output = sorter([3, 2, 1])
    codeflash_output = sorter(["c", "b", "a"])
    
    # Test unsorted list
    codeflash_output = sorter([3, 1, 2])
    codeflash_output = sorter(["b", "c", "a"])

def test_sorter_edge_cases():
    # Test empty list
    codeflash_output = sorter([])
    
    # Test list with identical elements
    codeflash_output = sorter([1, 1, 1, 1])
    codeflash_output = sorter(["a", "a", "a", "a"])
    
    # Test list with negative numbers
    codeflash_output = sorter([-1, -3, -2])
    codeflash_output = sorter([0, -1, 1])
    
    # Test list with mixed positive and negative numbers
    codeflash_output = sorter([3, -1, 2, -2])
    
    # Test list with floating point numbers
    codeflash_output = sorter([1.1, 1.0, 1.5])
    codeflash_output = sorter([2.5, 0.5, 1.5])

def test_sorter_large_scale():
    # Test large list of integers
    codeflash_output = sorter(list(range(1000, 0, -1)))
    codeflash_output = sorter(list(range(1000)))
    
    # Test large list of random integers
    random_list_1 = [random.randint(0, 1000) for _ in range(1000)]
    codeflash_output = sorter(random_list_1)
    
    random_list_2 = [random.randint(0, 100000) for _ in range(1000)]
    codeflash_output = sorter(random_list_2)

def test_sorter_special_cases():
    # Test list with strings of different lengths
    codeflash_output = sorter(["abc", "a", "ab"])
    
    # Test list with mixed data types (expected to raise TypeError)
    with pytest.raises(TypeError):
        sorter([1, "a", 3.5])
    
    # Test list with duplicates
    codeflash_output = sorter([3, 1, 2, 3, 1])
    codeflash_output = sorter(["a", "c", "b", "a"])

def test_sorter_performance():
    # Test very large list
    codeflash_output = sorter(list(range(1000000, 999000, -1)))
    
    random_list_3 = [random.randint(0, 1000000) for _ in range(1000)]
    codeflash_output = sorter(random_list_3)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m8q87ezf and push.

Codeflash

You can optimize the sorting part of the code by using a more efficient sorting algorithm such as Timsort, which is the default sorting algorithm in Python's `sorted()` and `sort()` methods. This way, the function will run much faster, especially for larger lists. Here's the rewritten program.



The `arr.sort()` method is highly optimized and will generally perform much better than the original bubble sort implementation. The corrected implementation preserves the original structure by keeping the print statements and return value unchanged.
@codeflash-ai-dev codeflash-ai-dev bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 26, 2025
@codeflash-ai-dev codeflash-ai-dev bot requested a review from alvin-r March 26, 2025 17:56
@alvin-r alvin-r closed this Mar 26, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants