Skip to content

Commit 193095f

Browse files
committed
entry readme
1 parent 5ed9915 commit 193095f

File tree

2 files changed

+35
-21
lines changed

2 files changed

+35
-21
lines changed

README.md

Lines changed: 22 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning
1+
# MFTCoder: High Accuracy and Efficiency Multi-task Fine-Tuning Framework
22

33
<p align="center">
44
<img src="./assets/github-codefuse-logo-update.jpg" width="50%" />
@@ -76,12 +76,14 @@
7676

7777
## Introduction
7878

79-
**High Accuracy and efficiency multi-task fine-tuning framework for Code LLMs.**
79+
**High Accuracy and efficiency Multi-task Fine-tuning framework for Code LLMs.**
80+
81+
**CodeFuse-MFTCoder** is an open-source project of CodeFuse for accurate and efficient Multi-task Fine-tuning(MFT) on Large Language Models(LLMs), especially on Code-LLMs(large language model for code tasks).
82+
Moreover, we open source Code LLM models and code-related datasets along with the MFTCoder framework.
8083

81-
**CodeFuse-MFTCoder** is an open-source project of CodeFuse for multitasking Code-LLMs(large language model for code tasks), which includes models, datasets, training codebases and inference guides.
8284
In MFTCoder, we released two codebases for finetuning Large Language Models:
83-
- ```mft_peft_hf``` is based on the HuggingFace Accelerate and deepspeed framework.
84-
- ```mft_atorch``` is based on the [ATorch frameworks](https://github.com/intelligent-machine-learning/dlrover), which is a fast distributed training framework of LLM.
85+
- ```MFTCoder-accelerate``` is a framework with accelerate and DeepSpeed/FSDP. All tech-stacks are open-source and vibrant. We highly recommend you try this framework and make your fintuning accurate and efficient.
86+
- ```MFTCoder-atorch``` is based on the [ATorch frameworks](https://github.com/intelligent-machine-learning/dlrover), which is a fast distributed training framework of LLM.
8587

8688
The aim of this project is to foster collaboration and share advancements in large language models, particularly within the domain of code development.
8789

@@ -93,17 +95,17 @@ The aim of this project is to foster collaboration and share advancements in lar
9395

9496
:white_check_mark: **Multi-model**: It integrates state-of-the-art open-source models such as gpt-neox, llama, llama-2, baichuan, Qwen, chatglm2, and more. (These finetuned models will be released in the near future.)
9597

96-
:white_check_mark: **Multi-framework**: It provides support for both HuggingFace Accelerate (with deepspeed) and [ATorch](https://github.com/intelligent-machine-learning/dlrover).
98+
:white_check_mark: **Multi-framework**: It provides support for both Accelerate (with Deepspeed and FSDP) and ATorch
9799

98-
:white_check_mark: **Efficient fine-tuning**: It supports LoRA and QLoRA, enabling fine-tuning of large models with minimal resources. The training speed meets the demands of almost all fine-tuning scenarios.
100+
:white_check_mark: **Efficient fine-tuning**: It supports LoRA, QLoRA as well as Full-parameters training, enabling fine-tuning of large models with minimal resources. The training speed meets the demands of almost all fine-tuning scenarios.
99101

100102
The main components of this project include:
101103
- Support for both SFT (Supervised FineTuning) and MFT (Multi-task FineTuning). The current MFTCoder achieves data balance among multiple tasks, and future releases will achieve a balance between task difficulty and convergence speed during training.
102-
- Support for QLoRA instruction fine-tuning, as well as LoRA fine-tuning.
103-
- Support for most mainstream open-source large models, particularly those relevant to Code-LLMs, such as Code-LLaMA, Starcoder, Codegeex2, Qwen, GPT-Neox, and more.
104+
- Support for QLoRA instruction fine-tuning, LoRA fine-tuning as well as Full-parameters fine-tuning.
105+
- Support for most mainstream open-source large models, particularly those relevant to Code-LLMs, such as DeepSeek-coder, Mistral, Mixtral, Chatglm3, Code-LLaMA, Starcoder, Codegeex2, Qwen, GPT-Neox, and more.
104106
- Support for weight merging between the LoRA adaptor and base models, simplifying the inference process.
105107
- Release of 2 high-quality code-related instruction fine-tuning datasets: [Evol-instruction-66k](https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k) and [CodeExercise-Python-27k](https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k).
106-
- Release of 2 models: [CodeFuse-13B](https://huggingface.co/codefuse-ai/CodeFuse-13B) and [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B).
108+
- Release of many Code LLMs, please refer to organizations: [codefuse-ai on huggingface](https://huggingface.co/codefuse-ai) or [codefuse-ai on modelscope](https://modelscope.cn/organization/codefuse-ai).
107109

108110

109111
## Requirements
@@ -113,13 +115,20 @@ Next, we have provided an init_env.sh script to simplify the installation of req
113115
```bash
114116
sh init_env.sh
115117
```
116-
If you require flash attention, please refer to the following link for installation instructions: https://github.com/Dao-AILab/flash-attention
118+
We highly recommend training with flash attention(version >= 2.1.0, preferably 2.3.6), please refer to the following link for installation instructions: https://github.com/Dao-AILab/flash-attention
117119

118120

119121
## Training
120-
🚀 [Huggingface accelerate + deepspeed Codebase for MFT(Multi-task Finetuning)](mftcoder_accelerate/README.md)
122+
As mentioned above, we open source two training frameworks. You could refer to their own READMEs for more details as followed.
123+
124+
If you are familiar with open source ```transformers```, ```DeepSpeed``` or ```FSDP```, we highly recommend you try:
125+
126+
🚀🚀 [MFTCoder-accelerate: Accelerate + Deepspeed/FSDP Codebase for MFT(Multi-task Finetuning)](mftcoder_accelerate/README.md)
127+
128+
129+
If you want to explore some new framework like atorch, you could check:
121130

122-
🚀 [Atorch Codebase for MFT(Multi-task Finetuning)](mftcoder_atorch/README.md)
131+
🚀 [MFTCoder-atorch: Atorch Codebase for MFT(Multi-task Finetuning)](mftcoder_atorch/README.md)
123132

124133

125134
## Models

README_cn.md

Lines changed: 13 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# MFTCoder: 多任务大模型代码能力微调框架
1+
# MFTCoder: 高效准确的多任务大模型微调框架
22

33
<p align="center">
44
<img src="./assets/github-codefuse-logo-update.jpg" width="50%" />
@@ -89,18 +89,18 @@
8989

9090
:white_check_mark: **多模型**:支持最新的多个开源模型,包括gpt-neox,llama,llama-2,baichuan,Qwen,chatglm2等;
9191

92-
:white_check_mark: **多框架**同时支持HuggingFace 和 [ATorch 框架](https://github.com/intelligent-machine-learning/dlrover)
92+
:white_check_mark: **多框架**既支持主流开源的Accelerate+DeepSpeed/FSDP,也支持新开源的[ATorch 框架](https://github.com/intelligent-machine-learning/dlrover)
9393

9494
:white_check_mark: **高效微调**:支持LoRA和QLoRA,可以用很少的资源去微调很大的模型,且训练速度能满足几乎所有微调场景;
9595

9696

9797
本项目主要内容如下:
9898
- 同时支持单任务SFT(Supervised FineTuning)和MFT(Multi-task FineTuning), 当前开源支持数据均衡,未来将持续开源难易均衡, 收敛均衡等
99-
- 支持QLoRA低成本高效指令微调、LoRA高效指令微调。
100-
- 支持绝大部分主流的开源大模型,重点关注代码能力优秀的开源大模型,如Qwen, GPT-Neox, Starcoder, Codegeex2, Code-LLaMA等。
99+
- 支持QLoRA低成本高效指令微调、LoRA高效指令微调、全量参数高精度微调
100+
- 支持绝大部分主流的开源大模型,重点关注代码能力优秀的开源大模型,如Deepseek-coder, Mistral, Mistral(MoE), Chatglm3, Qwen, GPT-Neox, Starcoder, Codegeex2, Code-LLaMA等。
101101
- 支持lora与base model进行权重合并,推理更便捷。
102102
- 整理并开源2个指令微调数据集:[Evol-instruction-66k](https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k)[CodeExercise-Python-27k](https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k)
103-
- 开源2个[Codefuse系列指令微调模型权重][CodeFuse-13B](https://huggingface.co/codefuse-ai/CodeFuse-13B)[CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B)
103+
- 开源多个[Codefuse系列指令微调模型权重],具体参见我们的huggingface组织和modelscope组织下的模型:[codefuse-ai huggingface](https://huggingface.co/codefuse-ai) or [codefuse-ai 魔搭](https://modelscope.cn/organization/codefuse-ai)
104104

105105

106106

@@ -110,12 +110,17 @@
110110
```bash
111111
sh init_env.sh
112112
```
113-
如果希望使用flash attention, 安装请参考 https://github.com/Dao-AILab/flash-attention
113+
我们强烈建议您安装flash attention(>=2.1.0, 推荐2.3.6), 安装请参考 https://github.com/Dao-AILab/flash-attention
114114

115115
## 训练
116-
🚀 [Huggingface accelerate + deepspeed Codebase for MFT(Multi-task Finetuning)](mftcoder_accelerate/README.md)
116+
如果你熟悉大模型训练的各种主流开源资源,例如 ```transformers```, ```DeepSpeed```, ```FSDP```等, 为了用开源项目快速上手高性能微调,我们建议您尝试:
117117

118-
🚀 [Atorch Codebase for MFT(Multi-task Finetuning)](mftcoder_atorch/README.md)
118+
🚀🚀 [MFTCoder-accelerate: Accelerate + DeepSpeed/FSDP Codebase for MFT(Multi-task Finetuning)](mftcoder_accelerate/README.md)
119+
120+
121+
如果你想探索一些新兴的训练框架,可以尝试:
122+
123+
🚀 [MFTCoder-atorch: Atorch Codebase for MFT(Multi-task Finetuning)](mftcoder_atorch/README.md)
119124

120125

121126
## 模型

0 commit comments

Comments
 (0)