|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | + Alipay.com Inc. |
| 4 | + Copyright (c) 2004-2023 All Rights Reserved. |
| 5 | + ------------------------------------------------------ |
| 6 | + File Name : paddlenlp.py |
| 7 | + Author : fuhui.phe |
| 8 | + Create Time : 2023/12/7 20:43 |
| 9 | + Description : description what the main function of this file |
| 10 | + Change Activity: |
| 11 | + version0 : 2023/12/7 20:43 by fuhui.phe init |
| 12 | +""" |
| 13 | +import numpy as np |
| 14 | + |
| 15 | +from modelcache.embedding.base import BaseEmbedding |
| 16 | +from modelcache.utils import import_paddlenlp, import_paddle |
| 17 | + |
| 18 | +import_paddle() |
| 19 | +import_paddlenlp() |
| 20 | + |
| 21 | + |
| 22 | +import paddle # pylint: disable=C0413 |
| 23 | +from paddlenlp.transformers import AutoModel, AutoTokenizer # pylint: disable=C0413 |
| 24 | + |
| 25 | + |
| 26 | +class PaddleNLP(BaseEmbedding): |
| 27 | + def __init__(self, model: str = "ernie-3.0-medium-zh"): |
| 28 | + self.model = AutoModel.from_pretrained(model) |
| 29 | + self.model.eval() |
| 30 | + |
| 31 | + self.tokenizer = AutoTokenizer.from_pretrained(model) |
| 32 | + if not self.tokenizer.pad_token: |
| 33 | + self.tokenizer.pad_token = "<pad>" |
| 34 | + self.__dimension = None |
| 35 | + |
| 36 | + def to_embeddings(self, data, **_): |
| 37 | + """Generate embedding given text input |
| 38 | +
|
| 39 | + :param data: text in string. |
| 40 | + :type data: str |
| 41 | +
|
| 42 | + :return: a text embedding in shape of (dim,). |
| 43 | + """ |
| 44 | + if not isinstance(data, list): |
| 45 | + data = [data] |
| 46 | + inputs = self.tokenizer( |
| 47 | + data, padding=True, truncation=True, return_tensors="pd" |
| 48 | + ) |
| 49 | + outs = self.model(**inputs)[0] |
| 50 | + emb = self.post_proc(outs, inputs).squeeze(0).detach().numpy() |
| 51 | + return np.array(emb).astype("float32") |
| 52 | + |
| 53 | + def post_proc(self, token_embeddings, inputs): |
| 54 | + attention_mask = paddle.ones(inputs["token_type_ids"].shape) |
| 55 | + input_mask_expanded = ( |
| 56 | + attention_mask.unsqueeze(-1).expand(token_embeddings.shape).astype("float32") |
| 57 | + ) |
| 58 | + sentence_embs = paddle.sum( |
| 59 | + token_embeddings * input_mask_expanded, 1 |
| 60 | + ) / paddle.clip(input_mask_expanded.sum(1), min=1e-9) |
| 61 | + return sentence_embs |
| 62 | + |
| 63 | + @property |
| 64 | + def dimension(self): |
| 65 | + """Embedding dimension. |
| 66 | +
|
| 67 | + :return: embedding dimension |
| 68 | + """ |
| 69 | + if not self.__dimension: |
| 70 | + self.__dimension = len(self.to_embeddings("foo")) |
| 71 | + return self.__dimension |
0 commit comments