|
| 1 | +Regression Algorithms |
| 2 | +• Ordinary Least Squares Regression (OLSR) |
| 3 | +• Linear Regression |
| 4 | +• Logistic Regression |
| 5 | +• Stepwise Regression |
| 6 | +• Multivariate Adaptive Regression Splines (MARS) |
| 7 | +• Locally Estimated Scatterplot Smoothing (LOESS) |
| 8 | +Instance-based Algorithms |
| 9 | +• k-Nearest Neighbor (kNN) |
| 10 | +• Learning Vector Quantization (LVQ) |
| 11 | +• Self-Organizing Map (SOM) |
| 12 | +• Locally Weighted Learning (LWL) |
| 13 | +• Support Vector Machines (SVM) |
| 14 | +Regularization Algorithms |
| 15 | +• Ridge Regression |
| 16 | +• Least Absolute Shrinkage and Selection Operator (LASSO) |
| 17 | +• Elastic Net |
| 18 | +• Least-Angle Regression (LARS) |
| 19 | +Decision Tree Algorithms |
| 20 | +• Classification and Regression Tree (CART) |
| 21 | +• Iterative Dichotomiser 3 (ID3) |
| 22 | +• C4.5 and C5.0 (different versions of a powerful approach) |
| 23 | +• Chi-squared Automatic Interaction Detection (CHAID) |
| 24 | +• Decision Stump |
| 25 | +• M5 |
| 26 | +• Conditional Decision Trees |
| 27 | +Bayesian Algorithms |
| 28 | +• Naive Bayes |
| 29 | +• Gaussian Naive Bayes |
| 30 | +• Multinomial Naive Bayes |
| 31 | +• Averaged One-Dependence Estimators (AODE) |
| 32 | +• Bayesian Belief Network (BBN) |
| 33 | +• Bayesian Network (BN) |
| 34 | +Clustering Algorithms |
| 35 | +• k-Means |
| 36 | +• k-Medians |
| 37 | +• Expectation Maximisation (EM) |
| 38 | +• Hierarchical Clustering |
| 39 | +Association Rule Learning Algorithms |
| 40 | +• Apriori algorithm |
| 41 | +• Eclat algorithm |
| 42 | +Artificial Neural Network Algorithms |
| 43 | +• Perceptron |
| 44 | +• Multilayer Perceptrons (MLP) |
| 45 | +• Back-Propagation |
| 46 | +• Stochastic Gradient Descent |
| 47 | +• Hopfield Network |
| 48 | +• Radial Basis Function Network (RBFN) |
| 49 | + |
| 50 | + |
| 51 | +Deep Learning Algorithms |
| 52 | +• Convolutional Neural Network (CNN) |
| 53 | +• Recurrent Neural Networks (RNNs) |
| 54 | +• Long Short-Term Memory Networks (LSTMs) |
| 55 | +• Stacked Auto-Encoders |
| 56 | +• Deep Boltzmann Machine (DBM) |
| 57 | +• Deep Belief Networks (DBN) |
| 58 | +Dimensionality Reduction Algorithms |
| 59 | +• Principal Component Analysis (PCA) |
| 60 | +• Principal Component Regression (PCR) |
| 61 | +• Partial Least Squares Regression (PLSR) |
| 62 | +• Sammon Mapping |
| 63 | +• Multidimensional Scaling (MDS) |
| 64 | +• Projection Pursuit |
| 65 | +• Linear Discriminant Analysis (LDA) |
| 66 | +• Mixture Discriminant Analysis (MDA) |
| 67 | +• Quadratic Discriminant Analysis (QDA) |
| 68 | +• Flexible Discriminant Analysis (FDA) |
| 69 | +Ensemble Algorithms |
| 70 | +• Boosting |
| 71 | +• Bootstrapped Aggregation (Bagging) |
| 72 | +• AdaBoost |
| 73 | +• Weighted Average (Blending) |
| 74 | +• Stacked Generalization (Stacking) |
| 75 | +• Gradient Boosting Machines (GBM) |
| 76 | +• Gradient Boosted Regression Trees (GBRT) |
| 77 | +• Random Forest |
| 78 | + |
0 commit comments