Skip to content

Commit bbbfb0a

Browse files
authored
Merge pull request #43 from codervisor/copilot/enhance-ai-coding-observability
Design: Add comprehensive AI Coding Agent Observability system documentation
2 parents 150caa4 + 7f4acca commit bbbfb0a

File tree

6 files changed

+2911
-74
lines changed

6 files changed

+2911
-74
lines changed

README.md

Lines changed: 156 additions & 74 deletions
Original file line numberDiff line numberDiff line change
@@ -1,77 +1,130 @@
1-
# Devlog - Long-Term Memory for AI-Assisted Development
1+
# Devlog - AI Coding Agent Observability Platform
22

3-
A comprehensive development logging system that provides **persistent memory for AI assistants** working on large-scale coding projects. Built as a monorepo with MCP (Model Context Protocol) server capabilities, devlog solves the critical problem of AI memory loss during extended development sessions by maintaining structured, searchable logs of tasks, decisions, and progress.
3+
A comprehensive **AI coding agent observability platform** that provides complete visibility into AI-assisted development. Built as a monorepo with MCP (Model Context Protocol) integration, devlog helps developers and teams monitor, analyze, and optimize their AI coding workflows by tracking agent activities, measuring code quality, and delivering actionable insights.
44

5-
## 🧠 The Problem: AI Memory Loss in Development
5+
## 🔍 The Vision: Complete AI Agent Transparency
66

7-
AI assistants face significant **memory limitations** when working on large codebases:
8-
- **Context window constraints** limit how much code can be processed at once
9-
- **Session boundaries** cause loss of project understanding between conversations
10-
- **Catastrophic forgetting** leads to inconsistent code modifications
11-
- **State management issues** result in duplicated or conflicting work
7+
Modern software development increasingly relies on AI coding agents, but teams face critical challenges:
8+
- **Lack of visibility** into what AI agents are doing and why
9+
- **Quality concerns** about AI-generated code
10+
- **Debugging difficulties** when AI agents fail or produce incorrect results
11+
- **Performance blind spots** in agent efficiency and cost
12+
- **Compliance gaps** for audit trails and governance
1213

13-
**Devlog provides the solution**: persistent, structured memory that maintains context across sessions, enabling AI assistants to work effectively on large projects over extended periods.
14+
**Devlog provides the solution**: A complete observability platform that captures, analyzes, and visualizes AI agent behavior, enabling teams to understand, optimize, and trust their AI-assisted development workflows.
1415

15-
> 📚 **Learn More**: Read our comprehensive analysis of [AI Memory Challenges in Development](docs/reference/ai-agent-memory-challenge.md) to understand why persistent logging is essential for AI-assisted coding.
16+
## 🎯 Core Capabilities
17+
18+
### 1. AI Agent Activity Monitoring
19+
- **Real-time tracking** of all AI agent actions (file operations, LLM calls, commands)
20+
- **Session management** for complete workflow visibility
21+
- **Visual timelines** showing agent behavior over time
22+
- **Live dashboards** for monitoring active agent sessions
23+
24+
### 2. Performance & Quality Analytics
25+
- **Agent performance metrics** (speed, efficiency, token usage)
26+
- **Code quality assessment** for AI-generated code
27+
- **Comparative analysis** across different AI agents and models
28+
- **Cost optimization** insights and recommendations
29+
30+
### 3. Intelligent Insights & Recommendations
31+
- **Pattern recognition** to identify success and failure modes
32+
- **Quality scoring** for AI-generated code
33+
- **Smart recommendations** for prompt optimization and workflow improvements
34+
- **Automated reporting** on agent performance and outcomes
35+
36+
### 4. Enterprise Compliance & Collaboration
37+
- **Complete audit trails** for all AI-assisted code changes
38+
- **Team collaboration** features for sharing learnings
39+
- **Policy enforcement** for AI agent usage
40+
- **Integration ecosystem** with GitHub, Jira, Slack, and more
41+
42+
> 📚 **Learn More**: Read about [AI Memory Challenges in Development](docs/reference/ai-agent-memory-challenge.md) and our [AI Agent Observability Design](docs/design/ai-agent-observability-design.md).
43+
44+
## 🏗️ Supported AI Agents
45+
46+
Devlog supports observability for all major AI coding assistants:
47+
- **GitHub Copilot** & GitHub Coding Agent
48+
- **Claude Code** (Anthropic)
49+
- **Cursor AI**
50+
- **Gemini CLI** (Google)
51+
- **Cline** (formerly Claude Dev)
52+
- **Aider**
53+
- Any **MCP-compatible** AI coding assistant
1654

1755
## 📦 Architecture
1856

19-
This monorepo contains three core packages that work together to provide persistent memory for development:
57+
This monorepo contains four core packages working together to provide comprehensive AI agent observability:
2058

2159
### `@codervisor/devlog-core`
22-
Core devlog management functionality including:
23-
- **TypeScript types**: All shared types and interfaces for type safety and consistency
24-
- **Storage backends**: SQLite, PostgreSQL, MySQL support
25-
- **CRUD operations**: Create, read, update, delete devlog entries
26-
- **Search & filtering**: Find entries by keywords, status, type, or priority
27-
- **Memory persistence**: Maintain state across AI sessions
28-
- **Integration services**: Sync with enterprise platforms (Jira, GitHub, Azure DevOps)
60+
Core services and data models including:
61+
- **TypeScript types**: Complete type definitions for events, sessions, and analytics
62+
- **Event collection**: High-performance capture of agent activities
63+
- **Session management**: Track complete agent working sessions
64+
- **Storage backends**: PostgreSQL with TimescaleDB for time-series events
65+
- **Analytics engine**: Metrics calculation, pattern detection, quality analysis
66+
- **Integration services**: Sync with GitHub, Jira, and other platforms
2967

3068
### `@codervisor/devlog-mcp`
31-
MCP (Model Context Protocol) server that exposes core functionality to AI assistants:
32-
- **15+ specialized tools** for devlog management
33-
- **Standardized MCP interface** for broad AI client compatibility
34-
- **Real-time memory access** during AI conversations
35-
- **Session persistence** across multiple interactions
69+
MCP (Model Context Protocol) server for AI agent integration:
70+
- **15+ observability tools** for event logging and querying
71+
- **Agent collectors** for major AI coding assistants
72+
- **Real-time event streaming** during agent sessions
73+
- **Session tracking** with automatic context capture
74+
75+
### `@codervisor/devlog-ai`
76+
AI-powered analysis and insights:
77+
- **Pattern recognition**: Identify successful and problematic patterns
78+
- **Quality analysis**: Assess AI-generated code quality
79+
- **Recommendation engine**: Suggest optimizations and improvements
80+
- **Predictive analytics**: Forecast outcomes and potential issues
3681

3782
### `@codervisor/devlog-web`
38-
Next.js web interface for visual devlog management:
39-
- **Dashboard view** of all development activities
40-
- **Timeline visualization** of project progress
41-
- **Search and filtering UI** for finding relevant context
42-
- **Manual entry management** for human developers
83+
Next.js web interface for visualization and analytics:
84+
- **Real-time dashboard**: Monitor active agent sessions
85+
- **Interactive timeline**: Visual replay of agent activities
86+
- **Analytics views**: Performance, quality, and cost metrics
87+
- **Session explorer**: Browse and analyze historical sessions
88+
- **Reports**: Automated insights and team analytics
4389

4490
## ✨ Key Features
4591

46-
### 🧠 **Persistent AI Memory**
47-
- **Cross-session continuity**: Maintain context between AI conversations
48-
- **Long-term project memory**: Remember decisions, patterns, and insights
49-
- **Context reconstruction**: Quickly restore project understanding
50-
- **Memory search**: Find relevant past work and decisions
51-
52-
### 📋 **Comprehensive Task Management**
53-
- **Work type tracking**: Features, bugfixes, tasks, refactoring, documentation
54-
- **Status workflows**: new → in-progress → blocked/review → testing → done
55-
- **Priority management**: Low, medium, high, critical priority levels
56-
- **Progress tracking**: Detailed notes with timestamps and categories
57-
58-
### 🔍 **Advanced Search & Discovery**
59-
- **Semantic search**: Find entries by keywords across title, description, notes
60-
- **Multi-dimensional filtering**: Status, type, priority, date ranges
61-
- **Related work discovery**: Prevent duplicate efforts and build on existing work
62-
- **Active context summaries**: Get current project state for AI assistants
63-
64-
### 🏢 **Enterprise Integration**
65-
- **Platform sync**: Jira, Azure DevOps, GitHub Issues integration
66-
- **Bidirectional updates**: Changes sync between devlog and external systems
67-
- **Unified workflow**: Manage work across multiple platforms from one interface
68-
- **Audit trails**: Track all changes and integrations
69-
70-
### 🛡️ **Data Integrity & Reliability**
71-
- **Deterministic IDs**: Hash-based IDs prevent duplicates across sessions
72-
- **Atomic operations**: Consistent data state even during interruptions
73-
- **Multiple storage backends**: SQLite, PostgreSQL, MySQL support
74-
- **Backup & recovery**: Built-in data protection mechanisms
92+
### 🔍 **Complete Activity Visibility**
93+
- **Real-time monitoring**: See what AI agents are doing as they work
94+
- **Event capture**: Log every file read/write, LLM request, command execution, and error
95+
- **Session tracking**: Group related activities into complete workflows
96+
- **Timeline visualization**: Visual replay of agent behavior with interactive controls
97+
98+
### 📊 **Performance & Quality Analytics**
99+
- **Agent comparison**: Side-by-side performance of different AI assistants
100+
- **Quality metrics**: Assess correctness, maintainability, and security of AI-generated code
101+
- **Cost analysis**: Track token usage and optimize for efficiency
102+
- **Trend analysis**: Monitor improvements and regressions over time
103+
104+
### 🧠 **Intelligent Insights**
105+
- **Pattern detection**: Automatically identify what leads to success or failure
106+
- **Smart recommendations**: Get suggestions for better prompts and workflows
107+
- **Anomaly detection**: Flag unusual behavior and potential issues
108+
- **Predictive analytics**: Forecast session outcomes and quality scores
109+
110+
### 👥 **Team Collaboration**
111+
- **Shared learnings**: Browse and learn from team members' successful sessions
112+
- **Prompt library**: Curated collection of effective prompts
113+
- **Best practices**: Automatically extracted from successful patterns
114+
- **Team analytics**: Understand team-wide AI usage and effectiveness
115+
116+
### 🛡️ **Enterprise Ready**
117+
- **Complete audit trails**: Every AI action logged with full context
118+
- **Policy enforcement**: Rules for AI agent behavior and usage
119+
- **Access control**: Fine-grained permissions for data access
120+
- **Compliance**: SOC2, ISO 27001, GDPR support with data retention policies
121+
122+
### 🔌 **Extensible Integration**
123+
- **Version control**: GitHub, GitLab, Bitbucket integration
124+
- **Issue tracking**: Jira, Linear, GitHub Issues sync
125+
- **CI/CD**: GitHub Actions, Jenkins, CircleCI hooks
126+
- **Communication**: Slack, Teams, Discord notifications
127+
- **API access**: REST and GraphQL APIs for custom integrations
75128

76129
## 🚀 Quick Start
77130

@@ -135,35 +188,64 @@ cp .env.example .env
135188
136189
## 🤖 AI Integration
137190

138-
Devlog provides seamless integration with AI assistants through the **Model Context Protocol (MCP)**:
191+
Devlog provides seamless integration with AI coding agents through multiple channels:
192+
193+
### MCP Protocol Integration
194+
- **Standardized tools** for event logging and session tracking
195+
- **Real-time streaming** of agent activities
196+
- **Automatic context capture** (project, files, git state)
197+
- **Compatible** with Claude, Copilot, and other MCP clients
139198

140-
- **15+ specialized tools** for memory management
141-
- **Real-time context access** during AI conversations
142-
- **Session persistence** across multiple interactions
143-
- **Automatic duplicate prevention** with smart ID generation
199+
### Agent-Specific Collectors
200+
- **Log monitoring** for agents that write logs
201+
- **API interceptors** for programmatic access
202+
- **Plugin architecture** for custom agent integrations
203+
- **Flexible event mapping** to standardized schema
144204

145-
AI assistants can create entries, track progress, search past work, and maintain context across development sessions.
205+
### Key MCP Tools
206+
```typescript
207+
// Start tracking an agent session
208+
mcp_agent_start_session({
209+
agentId: "github-copilot",
210+
objective: "Implement user authentication"
211+
});
212+
213+
// Log agent events
214+
mcp_agent_log_event({
215+
type: "file_write",
216+
filePath: "src/auth/login.ts",
217+
metrics: { tokenCount: 1200 }
218+
});
219+
220+
// Get analytics and recommendations
221+
mcp_agent_get_analytics({
222+
agentId: "github-copilot",
223+
timeRange: { start: "2025-01-01", end: "2025-01-31" }
224+
});
225+
```
146226

147-
> 📖 **Technical Details**: See [docs/guides/EXAMPLES.md](docs/guides/EXAMPLES.md) for complete MCP tool documentation and usage examples.
227+
> 📖 **Getting Started**: See [Agent Integration Guide](docs/guides/agent-integration.md) _(coming soon)_ and [MCP Tools Reference](docs/reference/mcp-tools.md) _(coming soon)_ for complete documentation.
148228
149229
## 📖 Documentation
150230

151231
### 🎯 **Start Here**
152-
- **[AI Memory Challenge](docs/reference/ai-agent-memory-challenge.md)** - Why devlog exists and the problems it solves
153-
- **[Usage Examples](docs/guides/EXAMPLES.md)** - Common workflows and usage patterns
154-
- **[Quick Setup Guide](docs/README.md)** - Getting started documentation
232+
- **[AI Agent Observability Design](docs/design/ai-agent-observability-design.md)** - Complete feature design
233+
- **[Quick Reference](docs/design/ai-agent-observability-quick-reference.md)** - Fast overview of capabilities
234+
- **[Implementation Checklist](docs/design/ai-agent-observability-implementation-checklist.md)** - Development roadmap
235+
- **[AI Memory Challenge](docs/reference/ai-agent-memory-challenge.md)** - Why observability matters
155236

156-
### 🔧 **Setup & Configuration**
157-
- **[Enterprise Integrations](docs/guides/INTEGRATIONS.md)** - Jira, Azure DevOps, GitHub setup
158-
- **[GitHub Setup](docs/guides/GITHUB_SETUP.md)** - Detailed GitHub integration guide
159-
- **[Testing Guide](docs/guides/TESTING.md)** - How to test the devlog system
237+
### 🔧 **Setup & Usage**
238+
- **[Quick Setup Guide](docs/README.md)** - Getting started
239+
- **[Agent Integration](docs/guides/agent-integration.md)** _(coming soon)_ - Connect your AI agents
240+
- **[Dashboard Guide](docs/guides/dashboard-usage.md)** _(coming soon)_ - Using the web interface
241+
- **[API Reference](docs/reference/api.md)** _(coming soon)_ - REST and GraphQL APIs
160242

161243
### 🤝 **Contributing**
162-
- **[Contributing Guide](CONTRIBUTING.md)** - How to contribute to the project
163-
- **[Development Guide](docs/guides/DEVELOPMENT.md)** - Development workflow and best practices
244+
- **[Contributing Guide](CONTRIBUTING.md)** - How to contribute
245+
- **[Development Guide](docs/guides/DEVELOPMENT.md)** - Development workflow
164246

165247
### 📁 **Complete Documentation**
166-
See the [docs/](docs/) directory for comprehensive documentation including technical specifications and design documents.
248+
See the [docs/](docs/) directory for all documentation including design documents, guides, and technical specifications.
167249

168250
## 🔧 Using the Core Library
169251

0 commit comments

Comments
 (0)