|
1 | | -from datasets import Dataset |
2 | | -from typing import Optional, Dict, Any, Tuple |
| 1 | +from datasets import Dataset, DatasetDict |
| 2 | +from typing import Optional, Tuple, Union |
| 3 | +import numpy as np |
3 | 4 | from ..trainer.logger import TrainingLogger |
| 5 | +from tqdm.auto import tqdm |
| 6 | +import logging |
| 7 | + |
| 8 | +# Configure logging |
| 9 | +logging.getLogger("datasets").setLevel(logging.WARNING) |
4 | 10 |
|
5 | 11 | class DatasetSplitter: |
6 | | - def __init__(self, logger=None): |
| 12 | + def __init__(self, logger: Optional[TrainingLogger] = None): |
| 13 | + """Initialize dataset splitter.""" |
7 | 14 | self.logger = logger or TrainingLogger() |
8 | | - |
| 15 | + |
| 16 | + def _get_dataset_from_dict(self, dataset: Union[Dataset, DatasetDict], split: str = "train") -> Dataset: |
| 17 | + """Extract dataset from DatasetDict if needed.""" |
| 18 | + if isinstance(dataset, DatasetDict): |
| 19 | + if split in dataset: |
| 20 | + return dataset[split] |
| 21 | + raise ValueError(f"DatasetDict does not contain split '{split}'") |
| 22 | + return dataset |
| 23 | + |
9 | 24 | def validate_split_params(self, train_size: float, val_size: float, test_size: float = None): |
10 | 25 | """Validate split parameters.""" |
11 | 26 | if train_size <= 0 or train_size >= 1: |
@@ -55,52 +70,104 @@ def train_test_split( |
55 | 70 | self.logger.log_error(f"Error splitting dataset: {str(e)}") |
56 | 71 | raise |
57 | 72 |
|
58 | | - def train_val_test_split(self, dataset, train_size: float, val_size: float, test_size: float = None): |
59 | | - """Split dataset into train, validation and test sets.""" |
| 73 | + def train_val_test_split( |
| 74 | + self, |
| 75 | + dataset: Union[Dataset, DatasetDict], |
| 76 | + train_size: float = 0.8, |
| 77 | + val_size: float = 0.1, |
| 78 | + test_size: float = 0.1, |
| 79 | + shuffle: bool = True, |
| 80 | + seed: int = 42, |
| 81 | + split: str = "train" |
| 82 | + ) -> Tuple[Dataset, Dataset, Dataset]: |
| 83 | + """ |
| 84 | + Split dataset into train, validation and test sets with progress indication. |
| 85 | + |
| 86 | + Args: |
| 87 | + dataset (Dataset or DatasetDict): Dataset to split |
| 88 | + train_size (float): Proportion of training set |
| 89 | + val_size (float): Proportion of validation set |
| 90 | + test_size (float): Proportion of test set |
| 91 | + shuffle (bool): Whether to shuffle the dataset |
| 92 | + seed (int): Random seed |
| 93 | + split (str): Which split to use if dataset is a DatasetDict |
| 94 | + |
| 95 | + Returns: |
| 96 | + Tuple[Dataset, Dataset, Dataset]: Train, validation and test datasets |
| 97 | + """ |
60 | 98 | try: |
61 | | - if not isinstance(dataset, Dataset): |
62 | | - if isinstance(dataset, dict) and 'train' in dataset: |
63 | | - dataset = dataset['train'] |
64 | | - else: |
65 | | - raise ValueError(f"Expected Dataset object or dict with 'train' key, got {type(dataset)}") |
66 | | - |
67 | | - if test_size is None: |
68 | | - test_size = 1.0 - train_size - val_size |
69 | | - |
70 | | - self.validate_split_params(train_size, val_size, test_size) |
| 99 | + # Get the actual dataset if we have a DatasetDict |
| 100 | + dataset = self._get_dataset_from_dict(dataset, split) |
71 | 101 |
|
72 | | - # If dataset is already split |
73 | | - if isinstance(dataset, dict) and all(k in dataset for k in ['train', 'validation', 'test']): |
74 | | - self.logger.log_info("Dataset already contains train/validation/test splits") |
75 | | - return dataset['train'], dataset['validation'], dataset['test'] |
| 102 | + # Validate split proportions |
| 103 | + total = train_size + val_size + test_size |
| 104 | + if not np.isclose(total, 1.0): |
| 105 | + raise ValueError(f"Split proportions must sum to 1, got {total}") |
76 | 106 |
|
77 | | - # Convert ratios to absolute sizes |
| 107 | + # Calculate split sizes |
78 | 108 | total_size = len(dataset) |
79 | | - if total_size == 0: |
80 | | - raise ValueError("Dataset is empty") |
81 | | - |
82 | | - train_end = int(total_size * train_size) |
83 | | - val_end = train_end + int(total_size * val_size) |
| 109 | + train_samples = int(total_size * train_size) |
| 110 | + val_samples = int(total_size * val_size) |
| 111 | + test_samples = total_size - train_samples - val_samples |
84 | 112 |
|
85 | | - # Shuffle dataset with seed for reproducibility |
86 | | - dataset = dataset.shuffle(seed=42) |
| 113 | + self.logger.log_info("Splitting dataset...") |
87 | 114 |
|
88 | | - # Split dataset |
89 | | - train_dataset = dataset.select(range(train_end)) |
90 | | - val_dataset = dataset.select(range(train_end, val_end)) |
91 | | - test_dataset = dataset.select(range(val_end, total_size)) |
| 115 | + # Create indices |
| 116 | + indices = np.arange(total_size) |
| 117 | + if shuffle: |
| 118 | + with tqdm(total=1, desc="Shuffling dataset", unit="operation") as pbar: |
| 119 | + rng = np.random.default_rng(seed) |
| 120 | + rng.shuffle(indices) |
| 121 | + pbar.update(1) |
92 | 122 |
|
93 | | - # Validate split sizes |
94 | | - if len(train_dataset) == 0 or len(val_dataset) == 0 or len(test_dataset) == 0: |
95 | | - raise ValueError("One or more splits are empty. Try adjusting split ratios.") |
| 123 | + # Split dataset using Hugging Face's built-in functionality |
| 124 | + with tqdm(total=2, desc="Creating splits", unit="split") as pbar: |
| 125 | + # First split: train vs rest |
| 126 | + train_val_split = dataset.train_test_split( |
| 127 | + train_size=train_size, |
| 128 | + seed=seed, |
| 129 | + shuffle=False # We already shuffled if needed |
| 130 | + ) |
| 131 | + train_dataset = train_val_split["train"] |
| 132 | + rest_dataset = train_val_split["test"] |
| 133 | + pbar.update(1) |
96 | 134 |
|
| 135 | + # Second split: val vs test from the rest |
| 136 | + val_ratio = val_size / (val_size + test_size) |
| 137 | + val_test_split = rest_dataset.train_test_split( |
| 138 | + train_size=val_ratio, |
| 139 | + seed=seed, |
| 140 | + shuffle=False |
| 141 | + ) |
| 142 | + val_dataset = val_test_split["train"] |
| 143 | + test_dataset = val_test_split["test"] |
| 144 | + pbar.update(1) |
| 145 | + |
| 146 | + # Log split sizes |
97 | 147 | self.logger.log_info(f"Split sizes - Train: {len(train_dataset)}, Val: {len(val_dataset)}, Test: {len(test_dataset)}") |
| 148 | + |
98 | 149 | return train_dataset, val_dataset, test_dataset |
99 | 150 |
|
100 | 151 | except Exception as e: |
101 | 152 | self.logger.log_error(f"Error splitting dataset: {str(e)}") |
102 | 153 | raise |
103 | | - |
| 154 | + |
| 155 | + def train_val_split( |
| 156 | + self, |
| 157 | + dataset: Union[Dataset, DatasetDict], |
| 158 | + train_size: float = 0.8, |
| 159 | + shuffle: bool = True, |
| 160 | + seed: int = 42, |
| 161 | + split: str = "train" |
| 162 | + ) -> Tuple[Dataset, Dataset]: |
| 163 | + """Split dataset into train and validation sets.""" |
| 164 | + dataset = self._get_dataset_from_dict(dataset, split) |
| 165 | + return dataset.train_test_split( |
| 166 | + train_size=train_size, |
| 167 | + shuffle=shuffle, |
| 168 | + seed=seed |
| 169 | + ).values() |
| 170 | + |
104 | 171 | def k_fold_split(self, dataset, n_splits: int = 5, shuffle: bool = True, seed: int = 42): |
105 | 172 | """Create k-fold cross validation splits.""" |
106 | 173 | try: |
|
0 commit comments