|
| 1 | +import os |
| 2 | +import time |
| 3 | +from itertools import product |
| 4 | +import pandas as pd |
| 5 | +from datetime import datetime, timedelta, timezone |
| 6 | +from unittest import TestCase |
| 7 | +from typing import Dict, Any |
| 8 | + |
| 9 | +from pyindicators import ema, rsi, crossover, crossunder |
| 10 | + |
| 11 | +from investing_algorithm_framework import TradingStrategy, DataSource, \ |
| 12 | + TimeUnit, DataType, create_app, BacktestDateRange, PositionSize, \ |
| 13 | + TradeStatus, RESOURCE_DIRECTORY, SnapshotInterval, generate_strategy_id |
| 14 | + |
| 15 | + |
| 16 | +class RSIEMACrossoverStrategy(TradingStrategy): |
| 17 | + time_unit = TimeUnit.HOUR |
| 18 | + interval = 2 |
| 19 | + |
| 20 | + def __init__( |
| 21 | + self, |
| 22 | + id, |
| 23 | + symbols, |
| 24 | + position_sizes, |
| 25 | + time_unit: TimeUnit, |
| 26 | + interval: int, |
| 27 | + market: str, |
| 28 | + rsi_time_frame: str, |
| 29 | + rsi_period: int, |
| 30 | + rsi_overbought_threshold, |
| 31 | + rsi_oversold_threshold, |
| 32 | + ema_time_frame, |
| 33 | + ema_short_period, |
| 34 | + ema_long_period, |
| 35 | + ema_cross_lookback_window: int = 10 |
| 36 | + ): |
| 37 | + self.rsi_time_frame = rsi_time_frame |
| 38 | + self.rsi_period = rsi_period |
| 39 | + self.rsi_result_column = f"rsi_{self.rsi_period}" |
| 40 | + self.rsi_overbought_threshold = rsi_overbought_threshold |
| 41 | + self.rsi_oversold_threshold = rsi_oversold_threshold |
| 42 | + self.ema_time_frame = ema_time_frame |
| 43 | + self.ema_short_result_column = f"ema_{ema_short_period}" |
| 44 | + self.ema_long_result_column = f"ema_{ema_long_period}" |
| 45 | + self.ema_crossunder_result_column = "ema_crossunder" |
| 46 | + self.ema_crossover_result_column = "ema_crossover" |
| 47 | + self.ema_short_period = ema_short_period |
| 48 | + self.ema_long_period = ema_long_period |
| 49 | + self.ema_cross_lookback_window = ema_cross_lookback_window |
| 50 | + data_sources = [] |
| 51 | + |
| 52 | + super().__init__( |
| 53 | + id=id, |
| 54 | + data_sources=data_sources, |
| 55 | + time_unit=time_unit, |
| 56 | + interval=interval, |
| 57 | + symbols=symbols, |
| 58 | + position_sizes=position_sizes |
| 59 | + ) |
| 60 | + |
| 61 | + for symbol in self.symbols: |
| 62 | + full_symbol = f"{symbol}/EUR" |
| 63 | + data_sources.append( |
| 64 | + DataSource( |
| 65 | + identifier=f"{symbol}_rsi_data", |
| 66 | + data_type=DataType.OHLCV, |
| 67 | + time_frame=self.rsi_time_frame, |
| 68 | + market=market, |
| 69 | + symbol=full_symbol, |
| 70 | + pandas=True |
| 71 | + ) |
| 72 | + ) |
| 73 | + data_sources.append( |
| 74 | + DataSource( |
| 75 | + identifier=f"{symbol}_ema_data", |
| 76 | + data_type=DataType.OHLCV, |
| 77 | + time_frame=self.ema_time_frame, |
| 78 | + market=market, |
| 79 | + symbol=full_symbol, |
| 80 | + pandas=True |
| 81 | + ) |
| 82 | + ) |
| 83 | + |
| 84 | + def prepare_indicators( |
| 85 | + self, |
| 86 | + rsi_data, |
| 87 | + ema_data |
| 88 | + ): |
| 89 | + ema_data = ema( |
| 90 | + ema_data, |
| 91 | + period=self.ema_short_period, |
| 92 | + source_column="Close", |
| 93 | + result_column=self.ema_short_result_column |
| 94 | + ) |
| 95 | + ema_data = ema( |
| 96 | + ema_data, |
| 97 | + period=self.ema_long_period, |
| 98 | + source_column="Close", |
| 99 | + result_column=self.ema_long_result_column |
| 100 | + ) |
| 101 | + # Detect crossover (short EMA crosses above long EMA) |
| 102 | + ema_data = crossover( |
| 103 | + ema_data, |
| 104 | + first_column=self.ema_short_result_column, |
| 105 | + second_column=self.ema_long_result_column, |
| 106 | + result_column=self.ema_crossover_result_column |
| 107 | + ) |
| 108 | + # Detect crossunder (short EMA crosses below long EMA) |
| 109 | + ema_data = crossunder( |
| 110 | + ema_data, |
| 111 | + first_column=self.ema_short_result_column, |
| 112 | + second_column=self.ema_long_result_column, |
| 113 | + result_column=self.ema_crossunder_result_column |
| 114 | + ) |
| 115 | + rsi_data = rsi( |
| 116 | + rsi_data, |
| 117 | + period=self.rsi_period, |
| 118 | + source_column="Close", |
| 119 | + result_column=self.rsi_result_column |
| 120 | + ) |
| 121 | + |
| 122 | + return ema_data, rsi_data |
| 123 | + |
| 124 | + def generate_buy_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]: |
| 125 | + """ |
| 126 | + Generate buy signals based on the moving average crossover. |
| 127 | +
|
| 128 | + data (Dict[str, Any]): Dictionary containing all the data for |
| 129 | + the strategy data sources. |
| 130 | +
|
| 131 | + Returns: |
| 132 | + Dict[str, pd.Series]: A dictionary where keys are symbols and values |
| 133 | + are pandas Series indicating buy signals (True/False). |
| 134 | + """ |
| 135 | + |
| 136 | + signals = {} |
| 137 | + for symbol in self.symbols: |
| 138 | + ema_data_identifier = f"{symbol}_ema_data" |
| 139 | + rsi_data_identifier = f"{symbol}_rsi_data" |
| 140 | + ema_data, rsi_data = self.prepare_indicators( |
| 141 | + data[ema_data_identifier].copy(), |
| 142 | + data[rsi_data_identifier].copy() |
| 143 | + ) |
| 144 | + |
| 145 | + # crossover confirmed |
| 146 | + ema_crossover_lookback = ema_data[ |
| 147 | + self.ema_crossover_result_column].rolling( |
| 148 | + window=self.ema_cross_lookback_window |
| 149 | + ).max().astype(bool) |
| 150 | + |
| 151 | + # use only RSI column |
| 152 | + rsi_oversold = rsi_data[self.rsi_result_column] \ |
| 153 | + < self.rsi_oversold_threshold |
| 154 | + |
| 155 | + # Combine both conditions |
| 156 | + buy_signal = rsi_oversold & ema_crossover_lookback |
| 157 | + buy_signals = buy_signal.fillna(False).astype(bool) |
| 158 | + signals[symbol] = buy_signals |
| 159 | + return signals |
| 160 | + |
| 161 | + def generate_sell_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]: |
| 162 | + """ |
| 163 | + Generate sell signals based on the moving average crossover. |
| 164 | +
|
| 165 | + Args: |
| 166 | + data (Dict[str, Any]): Dictionary containing all the data for |
| 167 | + the strategy data sources. |
| 168 | +
|
| 169 | + Returns: |
| 170 | + Dict[str, pd.Series]: A dictionary where keys are symbols and values |
| 171 | + are pandas Series indicating sell signals (True/False). |
| 172 | + """ |
| 173 | + |
| 174 | + signals = {} |
| 175 | + for symbol in self.symbols: |
| 176 | + ema_data_identifier = f"{symbol}_ema_data" |
| 177 | + rsi_data_identifier = f"{symbol}_rsi_data" |
| 178 | + ema_data, rsi_data = self.prepare_indicators( |
| 179 | + data[ema_data_identifier].copy(), |
| 180 | + data[rsi_data_identifier].copy() |
| 181 | + ) |
| 182 | + |
| 183 | + # Confirmed by crossover between short-term EMA and long-term EMA |
| 184 | + # within a given lookback window |
| 185 | + ema_crossunder_lookback = ema_data[ |
| 186 | + self.ema_crossunder_result_column].rolling( |
| 187 | + window=self.ema_cross_lookback_window |
| 188 | + ).max().astype(bool) |
| 189 | + |
| 190 | + # use only RSI column |
| 191 | + rsi_overbought = rsi_data[self.rsi_result_column] \ |
| 192 | + >= self.rsi_overbought_threshold |
| 193 | + |
| 194 | + # Combine both conditions |
| 195 | + sell_signal = rsi_overbought & ema_crossunder_lookback |
| 196 | + sell_signal = sell_signal.fillna(False).astype(bool) |
| 197 | + signals[symbol] = sell_signal |
| 198 | + return signals |
| 199 | + |
| 200 | +class Test(TestCase): |
| 201 | + |
| 202 | + @staticmethod |
| 203 | + def filter_function_with_closed_trades( |
| 204 | + backtests, backtest_date_range: BacktestDateRange |
| 205 | + ): |
| 206 | + """ |
| 207 | + Filter function that only keeps backtests with at least one closed trade. |
| 208 | + """ |
| 209 | + filtered = [] |
| 210 | + for backtest in backtests: |
| 211 | + metrics = backtest.get_backtest_metrics(backtest_date_range) |
| 212 | + if metrics.number_of_trades_closed > 0: |
| 213 | + filtered.append(backtest) |
| 214 | + |
| 215 | + return filtered |
| 216 | + |
| 217 | + def test_run_with_filter_function(self): |
| 218 | + """ |
| 219 | + Test run_vector_backtests with a filter_function that filters |
| 220 | + strategies based on whether they have closed trades. |
| 221 | + """ |
| 222 | + param_grid = { |
| 223 | + "rsi_time_frame": ["2h"], |
| 224 | + "rsi_period": [14], |
| 225 | + "rsi_overbought_threshold": [70, 80], |
| 226 | + "rsi_oversold_threshold": [30, 20], |
| 227 | + "ema_time_frame": ["2h"], |
| 228 | + "ema_short_period": [50, 100], |
| 229 | + "ema_long_period": [150, 200], |
| 230 | + "ema_cross_lookback_window": [2, 4, 6, 12] |
| 231 | + } |
| 232 | + |
| 233 | + param_options = param_grid |
| 234 | + param_variations = [ |
| 235 | + dict(zip(param_options.keys(), values)) |
| 236 | + for values in product(*param_options.values()) |
| 237 | + ] |
| 238 | + print( |
| 239 | + f"Total parameter combinations to evaluate: {len(param_variations)}") |
| 240 | + |
| 241 | + # RESOURCE_DIRECTORY should always point to the parent directory/resources |
| 242 | + # Resource directory should point to /tests/resources |
| 243 | + # Resource directory is two levels up from the current file |
| 244 | + resource_directory = os.path.join( |
| 245 | + os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'resources' |
| 246 | + ) |
| 247 | + config = {RESOURCE_DIRECTORY: resource_directory} |
| 248 | + app = create_app(name="GoldenCrossStrategy", config=config) |
| 249 | + app.add_market(market="BITVAVO", trading_symbol="EUR", initial_balance=400) |
| 250 | + end_date = datetime(2025, 12, 2, tzinfo=timezone.utc) |
| 251 | + start_date = end_date - timedelta(days=1095) |
| 252 | + |
| 253 | + # Split into multiple date ranges to test progressive filtering |
| 254 | + mid_date = start_date + timedelta(days=365) |
| 255 | + date_range_1 = BacktestDateRange( |
| 256 | + start_date=start_date, end_date=end_date, name="Period 1" |
| 257 | + ) |
| 258 | + date_range_2 = BacktestDateRange( |
| 259 | + start_date=mid_date, end_date=end_date, name="Period 2" |
| 260 | + ) |
| 261 | + strategies = [] |
| 262 | + for param_set in param_variations: |
| 263 | + strategies.append( |
| 264 | + RSIEMACrossoverStrategy( |
| 265 | + id=generate_strategy_id(param_set), |
| 266 | + time_unit=TimeUnit.HOUR, |
| 267 | + interval=2, |
| 268 | + market="BITVAVO", |
| 269 | + rsi_time_frame=param_set["rsi_time_frame"], |
| 270 | + rsi_period=param_set["rsi_period"], |
| 271 | + rsi_overbought_threshold=param_set[ |
| 272 | + "rsi_overbought_threshold" |
| 273 | + ], |
| 274 | + rsi_oversold_threshold=param_set[ |
| 275 | + "rsi_oversold_threshold" |
| 276 | + ], |
| 277 | + ema_time_frame=param_set["ema_time_frame"], |
| 278 | + ema_short_period=param_set["ema_short_period"], |
| 279 | + ema_long_period=param_set["ema_long_period"], |
| 280 | + ema_cross_lookback_window=param_set[ |
| 281 | + "ema_cross_lookback_window" |
| 282 | + ], |
| 283 | + symbols=[ |
| 284 | + "BTC", |
| 285 | + "ETH" |
| 286 | + ], |
| 287 | + position_sizes=[ |
| 288 | + PositionSize( |
| 289 | + symbol="BTC", percentage_of_portfolio=20.0 |
| 290 | + ), |
| 291 | + PositionSize( |
| 292 | + symbol="ETH", percentage_of_portfolio=20.0 |
| 293 | + ) |
| 294 | + ] |
| 295 | + ) |
| 296 | + ) |
| 297 | + |
| 298 | + start_time = time.time() |
| 299 | + backtests = app.run_vector_backtests( |
| 300 | + initial_amount=1000, |
| 301 | + backtest_date_ranges=[date_range_1, date_range_2], |
| 302 | + strategies=strategies, |
| 303 | + snapshot_interval=SnapshotInterval.DAILY, |
| 304 | + risk_free_rate=0.027, |
| 305 | + trading_symbol="EUR", |
| 306 | + market="BITVAVO", |
| 307 | + # filter_function=self.filter_function_with_closed_trades, |
| 308 | + backtest_storage_directory=os.path.join( |
| 309 | + resource_directory, "backtest_reports_for_testing" |
| 310 | + ), |
| 311 | + use_checkpoints=True, |
| 312 | + ) |
| 313 | + end_time = time.time() |
| 314 | + duration = end_time - start_time |
| 315 | + |
| 316 | + # Duration must be less than 300 seconds (5 minutes) |
| 317 | + # Each backtest should have atleast 2 backtest runs (one for each date range) |
| 318 | + for backtest in backtests: |
| 319 | + self.assertGreaterEqual( |
| 320 | + len(backtest.get_all_backtest_runs()), 2, |
| 321 | + "Each backtest should have at least 2 backtest runs" |
| 322 | + ) |
| 323 | + |
| 324 | + # # Should have fewer backtests than strategies if filter worked |
| 325 | + # self.assertLessEqual(len(backtests), len(strategies)) |
| 326 | + |
| 327 | + |
0 commit comments