|
| 1 | +import torch |
| 2 | +from types import SimpleNamespace |
| 3 | +import torchvision.transforms as T |
| 4 | +from aging_gan import data, model, train |
| 5 | +from test_data import create_utk_dataset |
| 6 | + |
| 7 | + |
| 8 | +class DummyAccelerator: |
| 9 | + def __init__(self): |
| 10 | + self.device = torch.device("cpu") |
| 11 | + |
| 12 | + def autocast(self): |
| 13 | + from contextlib import nullcontext |
| 14 | + |
| 15 | + return nullcontext() |
| 16 | + |
| 17 | + def backward(self, loss): |
| 18 | + loss.backward() |
| 19 | + |
| 20 | + def clip_grad_norm_(self, params, max_norm): |
| 21 | + torch.nn.utils.clip_grad_norm_(params, max_norm) |
| 22 | + |
| 23 | + |
| 24 | +class DummyFID: |
| 25 | + def reset(self): |
| 26 | + pass |
| 27 | + |
| 28 | + def update(self, *args, **kwargs): |
| 29 | + pass |
| 30 | + |
| 31 | + def compute(self): |
| 32 | + return torch.tensor(0.0) |
| 33 | + |
| 34 | + |
| 35 | +def test_smoke_training(tmp_path, monkeypatch): |
| 36 | + root = create_utk_dataset(tmp_path) |
| 37 | + transform = T.Compose([T.ToTensor()]) |
| 38 | + train_loader = data.make_unpaired_loader( |
| 39 | + str(root), |
| 40 | + "train", |
| 41 | + transform, |
| 42 | + batch_size=2, |
| 43 | + num_workers=1, |
| 44 | + seed=0, |
| 45 | + young_max=23, |
| 46 | + old_min=40, |
| 47 | + ) |
| 48 | + val_loader = data.make_unpaired_loader( |
| 49 | + str(root), |
| 50 | + "valid", |
| 51 | + transform, |
| 52 | + batch_size=2, |
| 53 | + num_workers=1, |
| 54 | + seed=0, |
| 55 | + young_max=23, |
| 56 | + old_min=40, |
| 57 | + ) |
| 58 | + |
| 59 | + G, F, DX, DY = model.initialize_models(ngf=4, ndf=4, n_blocks=1) |
| 60 | + opt_cfg = SimpleNamespace( |
| 61 | + gen_lr=1e-3, disc_lr=1e-3, weight_decay=0.0, num_train_epochs=1 |
| 62 | + ) |
| 63 | + opt_G, opt_F, opt_DX, opt_DY = train.initialize_optimizers(opt_cfg, G, F, DX, DY) |
| 64 | + sched_G, sched_F, sched_DX, sched_DY = train.make_schedulers( |
| 65 | + opt_cfg, opt_G, opt_F, opt_DX, opt_DY |
| 66 | + ) |
| 67 | + mse, l1, adv, cyc, ident = train.initialize_loss_functions() |
| 68 | + accelerator = DummyAccelerator() |
| 69 | + fid = DummyFID() |
| 70 | + monkeypatch.setattr(train, "wandb", SimpleNamespace(log=lambda *a, **k: None)) |
| 71 | + monkeypatch.setattr(train, "generate_and_save_samples", lambda *a, **k: None) |
| 72 | + cfg = SimpleNamespace(steps_for_logging_metrics=1, num_sample_generations_to_save=1) |
| 73 | + metrics = train.perform_epoch( |
| 74 | + cfg, |
| 75 | + train_loader, |
| 76 | + val_loader, |
| 77 | + G, |
| 78 | + F, |
| 79 | + DX, |
| 80 | + DY, |
| 81 | + mse, |
| 82 | + l1, |
| 83 | + adv, |
| 84 | + cyc, |
| 85 | + ident, |
| 86 | + opt_G, |
| 87 | + opt_F, |
| 88 | + opt_DX, |
| 89 | + opt_DY, |
| 90 | + sched_G, |
| 91 | + sched_F, |
| 92 | + sched_DX, |
| 93 | + sched_DY, |
| 94 | + 0, |
| 95 | + accelerator, |
| 96 | + fid, |
| 97 | + ) |
| 98 | + assert "val/loss_gen_total" in metrics |
0 commit comments