|
| 1 | +import os |
| 2 | + |
| 3 | +import pytest |
| 4 | + |
| 5 | +from mip import ( |
| 6 | + CBC, |
| 7 | + GUROBI, |
| 8 | + Model, |
| 9 | + MAXIMIZE, |
| 10 | + MINIMIZE, |
| 11 | + OptimizationStatus, |
| 12 | + INTEGER, |
| 13 | + CONTINUOUS, |
| 14 | + BINARY, |
| 15 | +) |
| 16 | + |
| 17 | +TOL = 1e-4 |
| 18 | +SOLVERS = [CBC] |
| 19 | +if "GUROBI_HOME" in os.environ: |
| 20 | + SOLVERS += [GUROBI] |
| 21 | + |
| 22 | +# Overall Optimization Tests |
| 23 | + |
| 24 | + |
| 25 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 26 | +@pytest.mark.parametrize("var_type", (CONTINUOUS, INTEGER)) |
| 27 | +def test_minimize_single_continuous_or_integer_variable_with_default_bounds( |
| 28 | + solver, var_type |
| 29 | +): |
| 30 | + m = Model(solver_name=solver, sense=MINIMIZE) |
| 31 | + x = m.add_var(name="x", var_type=var_type, obj=1) |
| 32 | + m.optimize() |
| 33 | + # check result |
| 34 | + assert m.status == OptimizationStatus.OPTIMAL |
| 35 | + assert abs(x.x) < TOL |
| 36 | + assert abs(m.objective_value) < TOL |
| 37 | + |
| 38 | + |
| 39 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 40 | +@pytest.mark.parametrize("var_type", (CONTINUOUS, INTEGER)) |
| 41 | +def test_maximize_single_continuous_or_integer_variable_with_default_bounds( |
| 42 | + solver, var_type |
| 43 | +): |
| 44 | + m = Model(solver_name=solver, sense=MAXIMIZE) |
| 45 | + x = m.add_var(name="x", var_type=var_type, obj=1) |
| 46 | + m.optimize() |
| 47 | + # check result |
| 48 | + assert m.status == OptimizationStatus.UNBOUNDED |
| 49 | + assert x.x is None |
| 50 | + assert m.objective_value is None |
| 51 | + |
| 52 | + |
| 53 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 54 | +@pytest.mark.parametrize( |
| 55 | + "sense,status,xvalue,objvalue", |
| 56 | + [ |
| 57 | + (MAXIMIZE, OptimizationStatus.OPTIMAL, 1, 1), # implicit upper bound 1 |
| 58 | + (MINIMIZE, OptimizationStatus.OPTIMAL, 0, 0), # implicit lower bound 0 |
| 59 | + ], |
| 60 | +) |
| 61 | +def test_single_binary_variable_with_default_bounds( |
| 62 | + solver, sense: str, status, xvalue, objvalue |
| 63 | +): |
| 64 | + m = Model(solver_name=solver, sense=sense) |
| 65 | + x = m.add_var(name="x", var_type=BINARY, obj=1) |
| 66 | + m.optimize() |
| 67 | + # check result |
| 68 | + assert m.status == status |
| 69 | + assert abs(x.x - xvalue) < TOL |
| 70 | + assert abs(m.objective_value - objvalue) < TOL |
| 71 | + |
| 72 | + |
| 73 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 74 | +@pytest.mark.parametrize("var_type", (CONTINUOUS, INTEGER)) |
| 75 | +@pytest.mark.parametrize( |
| 76 | + "lb,ub,min_obj,max_obj", |
| 77 | + ( |
| 78 | + (0, 0, 0, 0), # fixed to 0 |
| 79 | + (2, 2, 2, 2), # fixed to positive |
| 80 | + (-2, -2, -2, -2), # fixed to negative |
| 81 | + (1, 2, 1, 2), # positive range |
| 82 | + (-3, 2, -3, 2), # negative range |
| 83 | + (-4, 5, -4, 5), # range from positive to negative |
| 84 | + ), |
| 85 | +) |
| 86 | +def test_single_continuous_or_integer_variable_with_different_bounds( |
| 87 | + solver, var_type, lb, ub, min_obj, max_obj |
| 88 | +): |
| 89 | + # Minimum Case |
| 90 | + m = Model(solver_name=solver, sense=MINIMIZE) |
| 91 | + m.add_var(name="x", var_type=var_type, lb=lb, ub=ub, obj=1) |
| 92 | + m.optimize() |
| 93 | + # check result |
| 94 | + assert m.status == OptimizationStatus.OPTIMAL |
| 95 | + assert abs(m.objective_value - min_obj) < TOL |
| 96 | + |
| 97 | + # Maximum Case |
| 98 | + m = Model(solver_name=solver, sense=MAXIMIZE) |
| 99 | + m.add_var(name="x", var_type=var_type, lb=lb, ub=ub, obj=1) |
| 100 | + m.optimize() |
| 101 | + # check result |
| 102 | + assert m.status == OptimizationStatus.OPTIMAL |
| 103 | + assert abs(m.objective_value - max_obj) < TOL |
| 104 | + |
| 105 | + |
| 106 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 107 | +@pytest.mark.parametrize( |
| 108 | + "lb,ub,min_obj,max_obj", |
| 109 | + ( |
| 110 | + (0, 1, 0, 1), # regular case |
| 111 | + (0, 0, 0, 0), # fixed to 0 |
| 112 | + (1, 1, 1, 1), # fixed to 1 |
| 113 | + ), |
| 114 | +) |
| 115 | +def test_binary_variable_with_different_bounds(solver, lb, ub, min_obj, max_obj): |
| 116 | + # Minimum Case |
| 117 | + m = Model(solver_name=solver, sense=MINIMIZE) |
| 118 | + m.add_var(name="x", var_type=BINARY, lb=lb, ub=ub, obj=1) |
| 119 | + m.optimize() |
| 120 | + # check result |
| 121 | + assert m.status == OptimizationStatus.OPTIMAL |
| 122 | + assert abs(m.objective_value - min_obj) < TOL |
| 123 | + |
| 124 | + # Maximum Case |
| 125 | + m = Model(solver_name=solver, sense=MAXIMIZE) |
| 126 | + m.add_var(name="x", var_type=BINARY, lb=lb, ub=ub, obj=1) |
| 127 | + m.optimize() |
| 128 | + # check result |
| 129 | + assert m.status == OptimizationStatus.OPTIMAL |
| 130 | + assert abs(m.objective_value - max_obj) < TOL |
| 131 | + |
| 132 | + |
| 133 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 134 | +def test_binary_variable_illegal_bounds(solver): |
| 135 | + m = Model(solver_name=solver) |
| 136 | + # Illegal lower bound |
| 137 | + with pytest.raises(ValueError): |
| 138 | + m.add_var("x", lb=-1, var_type=BINARY) |
| 139 | + # Illegal upper bound |
| 140 | + with pytest.raises(ValueError): |
| 141 | + m.add_var("x", ub=2, var_type=BINARY) |
| 142 | + |
| 143 | + |
| 144 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 145 | +@pytest.mark.parametrize("sense", (MINIMIZE, MAXIMIZE)) |
| 146 | +@pytest.mark.parametrize( |
| 147 | + "var_type,lb,ub", |
| 148 | + ( |
| 149 | + (CONTINUOUS, 3.5, 2), |
| 150 | + (INTEGER, 5, 4), |
| 151 | + (BINARY, 1, 0), |
| 152 | + ), |
| 153 | +) |
| 154 | +def test_contradictory_variable_bounds(solver, sense: str, var_type: str, lb, ub): |
| 155 | + m = Model(solver_name=solver, sense=sense) |
| 156 | + m.add_var(name="x", var_type=var_type, lb=lb, ub=ub, obj=1) |
| 157 | + m.optimize() |
| 158 | + # check result |
| 159 | + assert m.status == OptimizationStatus.INFEASIBLE |
| 160 | + |
| 161 | + |
| 162 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 163 | +def test_float_bounds_for_integer_variable(solver): |
| 164 | + # Minimum Case |
| 165 | + m = Model(solver_name=solver, sense=MINIMIZE) |
| 166 | + m.add_var(name="x", var_type=INTEGER, lb=-1.5, ub=3.5, obj=1) |
| 167 | + m.optimize() |
| 168 | + # check result |
| 169 | + assert m.status == OptimizationStatus.OPTIMAL |
| 170 | + assert abs(m.objective_value - (-1)) < TOL |
| 171 | + |
| 172 | + # Maximum Case |
| 173 | + m = Model(solver_name=solver, sense=MAXIMIZE) |
| 174 | + m.add_var(name="x", var_type=INTEGER, lb=-1.5, ub=3.5, obj=1) |
| 175 | + m.optimize() |
| 176 | + # check result |
| 177 | + assert m.status == OptimizationStatus.OPTIMAL |
| 178 | + assert abs(m.objective_value - 3) < TOL |
| 179 | + |
| 180 | + |
| 181 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 182 | +@pytest.mark.parametrize("sense", (MINIMIZE, MAXIMIZE)) |
| 183 | +def test_single_default_variable_with_nothing_to_do(solver, sense): |
| 184 | + m = Model(solver_name=solver, sense=sense) |
| 185 | + m.add_var(name="x") |
| 186 | + m.optimize() |
| 187 | + # check result |
| 188 | + assert m.status == OptimizationStatus.OPTIMAL |
| 189 | + assert abs(m.objective_value) < TOL |
| 190 | + |
| 191 | + |
| 192 | +@pytest.mark.parametrize("solver", SOLVERS) |
| 193 | +@pytest.mark.parametrize("var_type", (CONTINUOUS, INTEGER, BINARY)) |
| 194 | +@pytest.mark.parametrize("obj", (1.2, 2)) |
| 195 | +def test_single_variable_with_different_non_zero_objectives(solver, var_type, obj): |
| 196 | + # Maximize |
| 197 | + m = Model(solver_name=solver, sense=MAXIMIZE) |
| 198 | + x = m.add_var(name="x", var_type=var_type, lb=0, ub=1, obj=obj) |
| 199 | + m.optimize() |
| 200 | + # check result |
| 201 | + assert m.status == OptimizationStatus.OPTIMAL |
| 202 | + assert abs(m.objective_value - obj) < TOL |
| 203 | + assert abs(x.x - 1.0) < TOL |
| 204 | + # Minimize with negative |
| 205 | + m = Model(solver_name=solver, sense=MINIMIZE) |
| 206 | + x = m.add_var(name="x", var_type=var_type, lb=0, ub=1, obj=-obj) |
| 207 | + m.optimize() |
| 208 | + # check result |
| 209 | + assert m.status == OptimizationStatus.OPTIMAL |
| 210 | + assert abs(m.objective_value - (-obj)) < TOL |
| 211 | + assert abs(x.x - 1.0) < TOL |
0 commit comments