|
| 1 | +from comet_ml import API, ui |
| 2 | +from comet_ml.data_structure import Histogram |
| 3 | +import random |
| 4 | +import numpy as np |
| 5 | +import plotly.express as px |
| 6 | + |
| 7 | +# Options: |
| 8 | + |
| 9 | +max_xbins = st.sidebar.slider( |
| 10 | + "Maximum X bins", # Label for the slider |
| 11 | + min_value=5, # Minimum allowed value |
| 12 | + max_value=20, # Maximum allowed value |
| 13 | + value=10, # Default starting value |
| 14 | + step=1 # Increment step for the slider |
| 15 | +) |
| 16 | +max_ybins = st.sidebar.slider( |
| 17 | + "Maximum Y bins", # Label for the slider |
| 18 | + min_value=5, # Minimum allowed value |
| 19 | + max_value=100, # Maximum allowed value |
| 20 | + value=50, # Default starting value |
| 21 | + step=1 # Increment step for the slider |
| 22 | +) |
| 23 | +start = None |
| 24 | +stop = None |
| 25 | +#max_ybins = 50 |
| 26 | +#max_xbins = 50 |
| 27 | +# Colors are scaled from highest to lowest. You can add |
| 28 | +# additional values between 0 and 1 to add color ranges. |
| 29 | +colorScale = [ |
| 30 | + [0, "white"], # lower values |
| 31 | + [0.5, "gray"], # middle value |
| 32 | + [1, "blue"] # higher values |
| 33 | +] |
| 34 | +showScale = False |
| 35 | +layout = { |
| 36 | + "title": "Histograms by Step", |
| 37 | + "xaxis": { |
| 38 | + "ticks": "", |
| 39 | + "side": "bottom", |
| 40 | + "title": "Steps" |
| 41 | + }, |
| 42 | + "yaxis": { |
| 43 | + "ticks": "", |
| 44 | + "ticksuffix": " ", |
| 45 | + "autosize": True, |
| 46 | + "title": "Weights" |
| 47 | + } |
| 48 | +} |
| 49 | + |
| 50 | +def collect(histogram, start=None, stop=None, bins=50): |
| 51 | + """ |
| 52 | + Collect the counts for the given range into bins. |
| 53 | +
|
| 54 | + Args: |
| 55 | + start: optional, float, start of range to display |
| 56 | + stop: optional, float, end of range to display |
| 57 | + bins: optional, int, number of bins |
| 58 | +
|
| 59 | + Returns a list of dicts containing details on each |
| 60 | + virtual bin. |
| 61 | + """ |
| 62 | + counts_compressed = histogram.counts_compressed() |
| 63 | + if start is None: |
| 64 | + if len(counts_compressed) > 0: |
| 65 | + start = histogram.values[counts_compressed[0][0]] |
| 66 | + else: |
| 67 | + start = -1.0 |
| 68 | + if stop is None: |
| 69 | + if len(counts_compressed) > 1: |
| 70 | + stop = histogram.values[counts_compressed[-1][0]] |
| 71 | + else: |
| 72 | + stop = 1.0 |
| 73 | + |
| 74 | + step = (stop - start) / bins |
| 75 | + |
| 76 | + counts = histogram.get_counts(start, stop + step, step) |
| 77 | + current = start |
| 78 | + bins = [] |
| 79 | + next_one = current + step |
| 80 | + i = 0 |
| 81 | + while next_one <= stop + step and i < len(counts): |
| 82 | + start_bin = histogram.get_bin_index(current) |
| 83 | + stop_bin = histogram.get_bin_index(next_one) |
| 84 | + current_bin = { |
| 85 | + "value_start": current, |
| 86 | + "value_stop": next_one, |
| 87 | + "bin_index_start": start_bin, |
| 88 | + "bin_index_stop": stop_bin, |
| 89 | + "count": counts[i], |
| 90 | + } |
| 91 | + bins.append(current_bin) |
| 92 | + current = next_one |
| 93 | + next_one = current + step |
| 94 | + i += 1 |
| 95 | + return bins |
| 96 | + |
| 97 | +def get_histogram_indices(length, max_xbins): |
| 98 | + """ |
| 99 | + Get indices from list of histograms, sampling if necessary. |
| 100 | + """ |
| 101 | + if (length > max_xbins): |
| 102 | + return ( |
| 103 | + [0] + |
| 104 | + random.sample( |
| 105 | + list(range(1, length - 1)), |
| 106 | + max_xbins - 2) + |
| 107 | + [length - 1]) |
| 108 | + else: |
| 109 | + return list(range(length)) |
| 110 | + |
| 111 | +def get_histogram_data( |
| 112 | + experiment, |
| 113 | + asset, |
| 114 | +): |
| 115 | + assetJSON = experiment.get_asset(asset["assetId"], return_type="json") |
| 116 | + histograms = [] |
| 117 | + # {"histograms": [{"step": num, "histogram": {"index_values"}}, ...] |
| 118 | + selected = get_histogram_indices(len(assetJSON["histograms"]), max_xbins) |
| 119 | + for index in selected: |
| 120 | + hist = assetJSON["histograms"][index] |
| 121 | + histogram = Histogram.from_json(hist["histogram"]) |
| 122 | + histogram.logged_at_step = hist["step"] |
| 123 | + histograms.append(histogram) |
| 124 | + |
| 125 | + # First, find the overall min/max of all histograms: |
| 126 | + min_val, max_val = float("+inf"), float("-inf") |
| 127 | + for histogram in histograms: |
| 128 | + # {"value_start", "value_stop", "bin_index_start", "bin_index_stop", "count"} |
| 129 | + data = collect(histogram, start=None, stop=None, bins=max_ybins) |
| 130 | + min_val = min(min_val, data[0]["value_start"]) |
| 131 | + max_val = max(max_val, data[-1]["value_stop"]) |
| 132 | + |
| 133 | + zValues = [] |
| 134 | + yValues = [] |
| 135 | + span = (max_val - min_val)/(max_ybins) |
| 136 | + xValues = np.arange(min_val, max_val + span, span) |
| 137 | + for h, histogram in enumerate(histograms): |
| 138 | + # {"value_start", "value_stop", "bin_index_start", "bin_index_stop", "count"} |
| 139 | + data = collect(histogram, start=min_val, stop=max_val, bins=max_ybins) |
| 140 | + zValues.append([bin["count"] for bin in data]) |
| 141 | + yValues.append(histogram.logged_at_step) |
| 142 | + return [xValues, yValues, np.transpose(zValues), min_val, max_val] |
| 143 | + |
| 144 | +def plot_histogram(experiment, asset): |
| 145 | + x, y, data, xmin, xmax = get_histogram_data( |
| 146 | + experiment, |
| 147 | + asset, |
| 148 | + ) |
| 149 | + if (len(data[0]) == 0): |
| 150 | + print("<h1>No histogram data available<h1>") |
| 151 | + return None |
| 152 | + |
| 153 | + # Transposed, so x is y, y is x: |
| 154 | + fig = px.imshow( |
| 155 | + data, |
| 156 | + x=y, |
| 157 | + y=x[:len(data)], |
| 158 | + aspect="auto", |
| 159 | + color_continuous_scale=colorScale, |
| 160 | + ) |
| 161 | + st.plotly_chart(fig) |
| 162 | + |
| 163 | + |
| 164 | +api = API() |
| 165 | +experiments = api.get_panel_experiments() |
| 166 | +if len(experiments) == 1: |
| 167 | + selected_experiment = experiments[0] |
| 168 | +else: |
| 169 | + selected_experiment = ui.dropdown("Experiments: ", experiments) |
| 170 | + |
| 171 | +if selected_experiment: |
| 172 | + assets = sorted( |
| 173 | + selected_experiment.get_asset_list('histogram_combined_3d'), |
| 174 | + key=lambda item: item["fileName"] |
| 175 | + ) |
| 176 | + selected_histogram = ui.dropdown( |
| 177 | + "Histogram: ", |
| 178 | + assets, |
| 179 | + format_func=lambda item: item["fileName"] |
| 180 | + ) |
| 181 | + if selected_histogram: |
| 182 | + plot_histogram(selected_experiment, selected_histogram) |
| 183 | + else: |
| 184 | + print("No histograms available.") |
| 185 | +else: |
| 186 | + print("No experiments available.") |
0 commit comments