diff --git a/SageMaker/Linear_example.ipynb b/SageMaker/Linear_example.ipynb
deleted file mode 100644
index 3a96356..0000000
--- a/SageMaker/Linear_example.ipynb
+++ /dev/null
@@ -1,371 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Comet.ml: Sagemaker Linear Learner Introduction Integration\n",
- "\n",
- "The code below is taken directly from Amazon Sagemaker's official [An Introduction to Linear Learner with MNIST](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/linear_learner_mnist/linear_learner_mnist.ipynb) notebook.\n",
- "\n",
- "The descriptive text has more or less been removed, but the code is identical. \n",
- "\n",
- "Follow along below to learn how to log Sagemaker training jobs to Comet.ml."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Install the comet_ml_sagemaker python package\n",
- "\n",
- "Comet's SageMaker configuration is available to Enterprise customers only. If you are interested in learning more about Comet Enterprise, or are in a trial period with Comet.ml and would like to evaluate the SageMaker integration, please email support@comet.ml and credentials can be shared to download the correct packages."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Prerequisites and Preprocessing\n",
- "#### Permissions and Environment Variables"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "bucket = \"NAME_YOUR_BUCKET\"\n",
- "prefix = \"sagemaker/DEMO-linear-mnist\"\n",
- "\n",
- "# Define IAM role\n",
- "import boto3\n",
- "import re\n",
- "from sagemaker import get_execution_role\n",
- "\n",
- "role = get_execution_role()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Data Ingestion"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "%%time\n",
- "import pickle, gzip, numpy, urllib.request, json\n",
- "\n",
- "# Load the dataset\n",
- "urllib.request.urlretrieve(\n",
- " \"http://deeplearning.net/data/mnist/mnist.pkl.gz\", \"mnist.pkl.gz\"\n",
- ")\n",
- "with gzip.open(\"mnist.pkl.gz\", \"rb\") as f:\n",
- " train_set, valid_set, test_set = pickle.load(f, encoding=\"latin1\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Data Inspection"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "plt.rcParams[\"figure.figsize\"] = (2, 10)\n",
- "\n",
- "\n",
- "def show_digit(img, caption=\"\", subplot=None):\n",
- " if subplot == None:\n",
- " _, (subplot) = plt.subplots(1, 1)\n",
- " imgr = img.reshape((28, 28))\n",
- " subplot.axis(\"off\")\n",
- " subplot.imshow(imgr, cmap=\"gray\")\n",
- " plt.title(caption)\n",
- "\n",
- "\n",
- "show_digit(train_set[0][30], \"This is a {}\".format(train_set[1][30]))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Data Conversion"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import io\n",
- "import numpy as np\n",
- "import sagemaker.amazon.common as smac\n",
- "\n",
- "vectors = np.array([t.tolist() for t in train_set[0]]).astype(\"float32\")\n",
- "labels = np.where(np.array([t.tolist() for t in train_set[1]]) == 0, 1, 0).astype(\n",
- " \"float32\"\n",
- ")\n",
- "\n",
- "buf = io.BytesIO()\n",
- "smac.write_numpy_to_dense_tensor(buf, vectors, labels)\n",
- "buf.seek(0)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Upload Training Data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import boto3\n",
- "import os\n",
- "\n",
- "key = \"recordio-pb-data\"\n",
- "boto3.resource(\"s3\").Bucket(bucket).Object(\n",
- " os.path.join(prefix, \"train\", key)\n",
- ").upload_fileobj(buf)\n",
- "s3_train_data = \"s3://{}/{}/train/{}\".format(bucket, prefix, key)\n",
- "print(\"uploaded training data location: {}\".format(s3_train_data))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Set up output S3 location for the model artifact that will be output as the result of training with the algorithm"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "output_location = \"s3://{}/{}/output\".format(bucket, prefix)\n",
- "print(\"training artifacts will be uploaded to: {}\".format(output_location))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Training the Linear Model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sagemaker.amazon.amazon_estimator import get_image_uri\n",
- "\n",
- "container = get_image_uri(boto3.Session().region_name, \"linear-learner\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import boto3\n",
- "import sagemaker\n",
- "\n",
- "sess = sagemaker.Session()\n",
- "\n",
- "linear = sagemaker.estimator.Estimator(\n",
- " container,\n",
- " role,\n",
- " train_instance_count=1,\n",
- " train_instance_type=\"ml.c4.xlarge\",\n",
- " output_path=output_location,\n",
- " sagemaker_session=sess,\n",
- ")\n",
- "linear.set_hyperparameters(\n",
- " feature_dim=784, predictor_type=\"binary_classifier\", mini_batch_size=200\n",
- ")\n",
- "\n",
- "linear.fit({\"train\": s3_train_data})"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Logging to Comet.ml"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Define your Comet [REST API](https://www.comet.com/docs/rest-api/getting-started/) and your [workspace](https://www.comet.com/docs/user-interface/#workspaces). See the [configuration documentation](http://docs.comet.ml/python-sdk/advanced/#python-configuration) for info on both specifications."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "COMET_REST_API = \"YOUR_API_KEY\"\n",
- "COMET_WORKSPACE = \"YOUR_WORKSPACE\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Import `comet_ml_sagemaker` package."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import comet_ml_sagemaker"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### comet_ml_sagemaker.log_sagemaker_job(estimator/regressor, api_key, workspace, project_name)\n",
- "Logs a Sagemaker job based on an estimator/regressor object \n",
- "\n",
- "* estimator/regressor = Sagemaker estimator/regressor object\n",
- "* api_key = your Comet REST API key\n",
- "* workspace = your Comet workspace\n",
- "* project_name = your Comet project_name"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# .log_sagemaker_job(regressor/estimator object from Sagemaker SDK, Comet Rest API key (optional, can be taken from usual config source), workspace (comet), project (comet))\n",
- "# I have used the Sagemaker SDK to train a model. I have the estimator/regressor object. I want to log whatever I just trained\n",
- "experiment = comet_ml_sagemaker.log_sagemaker_job(\n",
- " linear, api_key=COMET_REST_API, workspace=COMET_WORKSPACE, project_name=\"sagemaker\"\n",
- ")\n",
- "print(experiment.url)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### comet_ml_sagemaker.log_sagemaker_job_by_name(job_name, api_key, workspace, project_name)\n",
- "Logs a specific Sagemaker training job based on the jobname from the Sagemaker SDK.\n",
- "\n",
- "* job_name = Cloudwatch/Sagemaker training job name\n",
- "* api_key = your Comet REST API key\n",
- "* workspace = your Comet workspace\n",
- "* project_name = your Comet project_name"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# I have the name of a completed training job I want to lob\n",
- "# Same as .log_sagemaker_job, except instead of passing the regressor/estimator object, you pass the job name\n",
- "SAGEMAKER_TRAINING_JOB_NAME = \"SAGEMAKER_TRAINING_JOB_NAME\"\n",
- "experiment = comet_ml_sagemaker.log_sagemaker_job_by_name(\n",
- " SAGEMAKER_TRAINING_JOB_NAME,\n",
- " api_key=COMET_REST_API,\n",
- " workspace=COMET_WORKSPACE,\n",
- " project_name=\"sagemaker\",\n",
- ")\n",
- "print(experiment.url)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### comet_ml_sagemaker.log_last_sagemaker_job(api_key, workspace, project_name)\n",
- "Will log the last *started* Sagemaker training job based on the current config.\n",
- "\n",
- "* api_key = your Comet REST API key\n",
- "* workspace = your Comet workspace\n",
- "* project_name = your Comet project_name"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Logs the last job for your current Amazon Region / S3\n",
- "experiment = comet_ml_sagemaker.log_last_sagemaker_job(\n",
- " api_key=COMET_REST_API, workspace=COMET_WORKSPACE, project_name=\"sagemaker\"\n",
- ")\n",
- "print(experiment.url)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Note on SageMaker configuration\n",
- "\n",
- "The Comet.ml Sagemaker configuration is using boto to find your training job data, please refer to the [boto documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html) to configure the region and/or credentials if needed."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/SageMaker/README.md b/SageMaker/README.md
deleted file mode 100644
index 2d4ad73..0000000
--- a/SageMaker/README.md
+++ /dev/null
@@ -1,83 +0,0 @@
-
-
-## SageMaker Integration with Comet.ml
-
-Comet's SageMaker integration is available to Enterprise customers only. If you are interested in learning more about Comet Enterprise, or are in a trial period with Comet.ml and would like to evaluate the SageMaker integration, please email support@comet.ml and credentials can be shared to download the correct packages.
-
-## Examples Repository
-
-This repository contains examples of using Comet.ml with SageMaker built-in Algorithms Linear Learner and Random Cut Forests.
-
-
-## Documentation
-
-Full [documentation](http://www.comet.ml/docs/) and additional training examples are available on our website.
-
-
-## Installation
-
-Please contact us for installation instructions.
-
-## Configuration
-
-The SageMaker integration is following the [Comet.ml Python SDK configuration](http://docs.comet.ml/python-sdk/advanced/#python-configuration) for configuring your Rest API Key, your workspace and project_name for created experiments. It's also following the [Boto configuration](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html) to find your SageMaker training jobs.
-
-## Logging SageMaker training runs to Comet
-
-Below find three different ways you can log your SageMaker jobs to Comet: with an existing regressor/estimator object, with a SageMaker Job Name, or with the last SageMaker job.
-
-***
-
-### comet_ml_sagemaker.log_sagemaker_job
-
-`log_sagemaker_job(sagemaker_object, api_key, workspace, project_name)`
-
-Logs a Sagemaker job based on an estimator/regressor object
-
-* **estimator/regressor** = Sagemaker estimator/regressor object
-* **api_key** = your Comet REST API key
-* **workspace** = your Comet workspace
-* **project_name** = your Comet project_name
-
-***
-
-### comet_ml_sagemaker.log_sagemaker_job_by_name
-
-`log_sagemaker_job_by_name(job_name, api_key, workspace, project_name)`
-
-Logs a specific Sagemaker training job based on the jobname from the Sagemaker SDK.
-
-* **job_name** = Cloudwatch/Sagemaker training job name
-* **api_key** = your Comet REST API key
-* **workspace** = your Comet workspace
-* **project_name** = your Comet project_name
-
-***
-
-### comet_ml_sagemaker.log_last_sagemaker_job
-
-`log_last_sagemaker_job(api_key, workspace, project_name)`
-
-Will log the last *started* Sagemaker training job based on the current config.
-
-* **api_key** = your Comet REST API key
-* **workspace** = your Comet workspace
-* **project_name** = your Comet project_name
-
-***
-
-## Tutorials + Examples
-- [Linear Learner](Linear_example.ipynb)
-- [Random Cut Forests](random_forest.ipynb)
-
-
-## Support
-Have questions? We have answers -
-- Try checking our [FAQ Page](https://www.comet.ml/faq)
-- Email us at
-- For the fastest response, ping us on [Slack](https://join.slack.com/t/cometml/shared_invite/enQtMzM0OTMwNTQ0Mjc5LTM4ZDViODkyYTlmMTVlNWY0NzFjNGQ5Y2Q1Y2EwMjQ5MzQ4YmI2YjhmZTY3YmYxYTYxYTNkYzM4NjgxZmJjMDI)
-
-
-## Feature Spotlight
-Check out new product features and updates through our [Release Notes](https://www.notion.so/cometml/Comet-ml-Release-Notes-93d864bcac584360943a73ae9507bcaa). Also checkout our articles on [Medium](https://medium.com/comet-ml).
-
diff --git a/SageMaker/random_forest.ipynb b/SageMaker/random_forest.ipynb
deleted file mode 100644
index c7bd49b..0000000
--- a/SageMaker/random_forest.ipynb
+++ /dev/null
@@ -1,283 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Comet.ml: Sagemaker Random Cut Forests Introduction Integration\n",
- "\n",
- "The code below is taken directly from Amazon Sagemaker's official [An Introduction to SageMaker Random Cut Forests](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb) notebook.\n",
- "\n",
- "The descriptive text has more or less been removed, but the code is identical. \n",
- "\n",
- "Follow along below to learn how to log Sagemaker training jobs to Comet.ml."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Install the comet_ml_sagemaker python package\n",
- "\n",
- "Comet's SageMaker configuration is available to Enterprise customers only. If you are interested in learning more about Comet Enterprise, or are in a trial period with Comet.ml and would like to evaluate the SageMaker integration, please email support@comet.ml and credentials can be shared to download the correct packages."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Select Amazon S3 Bucket"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import boto3\n",
- "import botocore\n",
- "import sagemaker\n",
- "import sys\n",
- "\n",
- "\n",
- "bucket = \"NAME_YOUR_BUCKET\" # <--- specify a bucket you have access to\n",
- "prefix = \"sagemaker/rcf-benchmarks\"\n",
- "execution_role = sagemaker.get_execution_role()\n",
- "\n",
- "\n",
- "# check if the bucket exists\n",
- "try:\n",
- " boto3.Session().client(\"s3\").head_bucket(Bucket=bucket)\n",
- "except botocore.exceptions.ParamValidationError as e:\n",
- " print(\n",
- " \"Hey! You either forgot to specify your S3 bucket\"\n",
- " \" or you gave your bucket an invalid name!\"\n",
- " )\n",
- "except botocore.exceptions.ClientError as e:\n",
- " if e.response[\"Error\"][\"Code\"] == \"403\":\n",
- " print(\"Hey! You don't have permission to access the bucket, {}.\".format(bucket))\n",
- " elif e.response[\"Error\"][\"Code\"] == \"404\":\n",
- " print(\"Hey! Your bucket, {}, doesn't exist!\".format(bucket))\n",
- " else:\n",
- " raise\n",
- "else:\n",
- " print(\"Training input/output will be stored in: s3://{}/{}\".format(bucket, prefix))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Obtain and Inspect Example Data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "%%time\n",
- "\n",
- "import pandas as pd\n",
- "import urllib.request\n",
- "\n",
- "data_filename = \"nyc_taxi.csv\"\n",
- "data_source = \"https://raw.githubusercontent.com/numenta/NAB/master/data/realKnownCause/nyc_taxi.csv\"\n",
- "\n",
- "urllib.request.urlretrieve(data_source, data_filename)\n",
- "taxi_data = pd.read_csv(data_filename, delimiter=\",\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Training\n",
- "\n",
- "#### Hyperparameters"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sagemaker import RandomCutForest\n",
- "\n",
- "session = sagemaker.Session()\n",
- "\n",
- "# specify general training job information\n",
- "rcf = RandomCutForest(\n",
- " role=execution_role,\n",
- " train_instance_count=1,\n",
- " train_instance_type=\"ml.m4.xlarge\",\n",
- " data_location=\"s3://{}/{}/\".format(bucket, prefix),\n",
- " output_path=\"s3://{}/{}/output\".format(bucket, prefix),\n",
- " num_samples_per_tree=512,\n",
- " num_trees=50,\n",
- ")\n",
- "\n",
- "# automatically upload the training data to S3 and run the training job\n",
- "rcf.fit(rcf.record_set(taxi_data.value.as_matrix().reshape(-1, 1)))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Logging to Comet.ml"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Define your Comet [REST API](https://www.comet.com/docs/rest-api/getting-started/) and your [workspace](https://www.comet.com/docs/user-interface/#workspaces). See the [configuration documentation](http://docs.comet.ml/python-sdk/advanced/#python-configuration) for info on both specifications."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "COMET_REST_API = \"YOUR_API_KEY\"\n",
- "COMET_WORKSPACE = \"YOUR_WORKSPACE\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Import `comet_ml_sagemaker` package."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import comet_ml_sagemaker"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### comet_ml_sagemaker.log_sagemaker_job(estimator/regressor, api_key, workspace, project_name)\n",
- "Logs a Sagemaker job based on an estimator/regressor object \n",
- "\n",
- "* estimator/regressor = Sagemaker estimator/regressor object\n",
- "* api_key = your Comet REST API key\n",
- "* workspace = your Comet workspace\n",
- "* project_name = your Comet project_name"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# .log_sagemaker_job(regressor/estimator object from Sagemaker SDK, Comet Rest API key (optional, can be taken from usual config source), workspace (comet), project (comet))\n",
- "# I have used the Sagemaker SDK to train a model. I have the estimator/regressor object. I want to log whatever I just trained\n",
- "experiment = comet_ml_sagemaker.log_sagemaker_job(\n",
- " rcf, api_key=COMET_REST_API, workspace=COMET_WORKSPACE, project_name=\"sagemaker\"\n",
- ")\n",
- "print(experiment.url)\n",
- "experiment.add_tags([\"random_forest\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### comet_ml_sagemaker.log_sagemaker_job_by_name(job_name, api_key, workspace, project_name)\n",
- "Logs a specific Sagemaker training job based on the jobname from the Sagemaker SDK.\n",
- "\n",
- "* job_name = Cloudwatch/Sagemaker training job name\n",
- "* api_key = your Comet REST API key\n",
- "* workspace = your Comet workspace\n",
- "* project_name = your Comet project_name"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# I have the name of a completed training job I want to lob\n",
- "# Same as .log_sagemaker_job, except instead of passing the regressor/estimator object, you pass the job name\n",
- "SAGEMAKER_TRAINING_JOB_NAME = \"SAGEMAKER_TRAINING_JOB_NAME\"\n",
- "experiment = comet_ml_sagemaker.log_sagemaker_job_by_name(\n",
- " SAGEMAKER_TRAINING_JOB_NAME,\n",
- " api_key=COMET_REST_API,\n",
- " workspace=COMET_WORKSPACE,\n",
- " project_name=\"sagemaker\",\n",
- ")\n",
- "print(experiment.url)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### comet_ml_sagemaker.log_last_sagemaker_job(api_key, workspace, project_name)\n",
- "Will log the last *started* Sagemaker training job based on the current config.\n",
- "\n",
- "* api_key = your Comet REST API key\n",
- "* workspace = your Comet workspace\n",
- "* project_name = your Comet project_name"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Logs the last job for your current Amazon Region / S3\n",
- "experiment = comet_ml_sagemaker.log_last_sagemaker_job(\n",
- " api_key=COMET_REST_API, workspace=COMET_WORKSPACE, project_name=\"sagemaker\"\n",
- ")\n",
- "print(experiment.url)\n",
- "experiment.add_tags([\"random_forest\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Note on SageMaker configuration\n",
- "\n",
- "The Comet.ml Sagemaker configuration is using boto to find your training job data, please refer to the [boto documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html) to configure the region and/or credentials if needed."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}