Skip to content
Discussion options

You must be logged in to vote

I figured it out. I took the execution code from a controlnet processor:

    def run(self, images, lower_color_RGB, upper_color_RGB):
        outs = []
        for single_image in images:
            img = np.asarray(single_image * 255., dtype=np.uint8)

            lower_bound = (lower_color_RGB, lower_color_RGB, lower_color_RGB)
            upper_bound = (upper_color_RGB, upper_color_RGB, upper_color_RGB)

            mask = cv2.inRange(img, lower_bound, upper_bound)

            image_out = cv2.bitwise_and(img, img, mask=mask)
            #image_out = opencv2tensor(image_out)
            outs.append(torch.from_numpy(image_out.astype(np.float32) / 255.0))

        return (torch.stack(ou…

Replies: 1 comment

Comment options

You must be logged in to vote
0 replies
Answer selected by Freebird17
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
None yet
1 participant