@@ -65,13 +65,13 @@ class CWLBooleanInput(_CWLInput):
6565
6666class CWLStringInput (str , _CWLInput ):
6767 """Use that hint to annotate that a variable is a string input. You can use the typing annotation
68- as a string by importing it. At the generated script a command line argument with the name of the variable
69- will be created and the assignment of value will be generalised.
68+ as a string by importing it. At the generated script a command line argument with the name of the variable
69+ will be created and the assignment of value will be generalised.
7070
71- >>> dataset1: CWLBooleanInput = 'this is a message input'
72- >>> dataset2: 'CWLBooleanInput ' = 'yet another message input'
71+ >>> dataset1: CWLStringInput = 'this is a message input'
72+ >>> dataset2: 'CWLStringInput ' = 'yet another message input'
7373
74- """
74+ """
7575 pass
7676
7777
@@ -80,8 +80,8 @@ class CWLIntInput(_CWLInput):
8080 as a string by importing it. At the generated script a command line argument with the name of the variable
8181 will be created and the assignment of value will be generalised.
8282
83- >>> dataset1: CWLBooleanInput = 1
84- >>> dataset2: 'CWLBooleanInput ' = 2
83+ >>> dataset1: CWLIntInput = 1
84+ >>> dataset2: 'CWLIntInput ' = 2
8585
8686 """
8787 pass
@@ -95,7 +95,7 @@ class CWLFilePathOutput(str, _CWLOutput):
9595 """Use that hint to annotate that a variable is a string-path to an output file. You can use the typing annotation
9696 as a string by importing it. The generated file will be mapped as a CWL output.
9797
98- >>> filename: CWLBooleanInput = 'data.csv'
98+ >>> filename: CWLFilePathOutput = 'data.csv'
9999
100100 """
101101 pass
@@ -111,7 +111,7 @@ def dump(cls, dumper: Callable, filename, *args, **kwargs):
111111
112112 >>> import pandas
113113 >>> d: CWLDumpable.dump(d.to_csv, "dumpable.csv", sep="\\ t", index=False) = pandas.DataFrame(
114- ... [[1,2, 3], [4,5, 6], [7,8, 9]]
114+ ... [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
115115 ... )
116116
117117 In that example the converter will add at the end of the script the following line:
@@ -132,14 +132,11 @@ class CWLDumpableFile(CWLDumpable):
132132
133133 >>> data: CWLDumpableFile = "this is text data"
134134
135-
136135 the converter will append at the end of the script the following lines:
137136
138-
139137 >>> with open('data', 'w') as f:
140138 ... f.write(data)
141139
142-
143140 and at the CWL, the data, will be mapped as a output.
144141 """
145142 pass
@@ -165,14 +162,14 @@ class CWLPNGPlot(CWLDumpable):
165162 be called.
166163
167164 >>> import matplotlib.pyplot as plt
168- >>> data = [1,2, 3]
169- >>> new_data: ' CWLPNGPlot' = plt.plot(data)
165+ >>> data = [1, 2, 3]
166+ >>> new_data: CWLPNGPlot = plt.plot(data)
170167
171168 the converter will tranform these lines to
172169
173170 >>> import matplotlib.pyplot as plt
174- >>> data = [1,2, 3]
175- >>> new_data: ' CWLPNGPlot' = plt.plot(data)
171+ >>> data = [1, 2, 3]
172+ >>> new_data: CWLPNGPlot = plt.plot(data)
176173 >>> plt.savefig('new_data.png')
177174
178175
@@ -181,9 +178,9 @@ class CWLPNGPlot(CWLDumpable):
181178 To do that in your notebook you have to create a new figure before the plot command or use the CWLPNGFigure.
182179
183180 >>> import matplotlib.pyplot as plt
184- >>> data = [1,2, 3]
181+ >>> data = [1, 2, 3]
185182 >>> plt.figure()
186- >>> new_data: ' CWLPNGPlot' = plt.plot(data)
183+ >>> new_data: CWLPNGPlot = plt.plot(data)
187184 """
188185 pass
189186
@@ -194,14 +191,13 @@ class CWLPNGFigure(CWLDumpable):
194191
195192 >>> import matplotlib.pyplot as plt
196193 >>> data = [1,2,3]
197- >>> new_data: 'CWLPNGPlot' = plt.plot(data)
194+ >>> new_data: CWLPNGFigure = plt.plot(data)
198195
199196 the converter will tranform these lines to
200197
201198 >>> import matplotlib.pyplot as plt
202- >>> data = [1,2, 3]
199+ >>> data = [1, 2, 3]
203200 >>> plt.figure()
204- >>> new_data: 'CWLPNGPlot' = plt.plot(data)
201+ >>> new_data: CWLPNGFigure = plt.plot(data)
205202 >>> plt.savefig('new_data.png')
206-
207203 """
0 commit comments