@@ -408,10 +408,6 @@ def wrapper(*args):
408408def _chofactor (A ):
409409 """Returns the Cholesky factorisation/decomposition matrix.
410410
411- Note
412- ----
413- Random data inserted in the entries not used by Cholesky factorisation.
414-
415411 Parameters
416412 ----------
417413 A (array): Matrix A represented as an (m x m) array.
@@ -428,6 +424,10 @@ def _chofactor(A):
428424
429425 \mathbf{A} = \mathbf{L} \mathbf{L}^{\mathrm{T}}
430426
427+ Note
428+ ----
429+ Random data inserted in the entries not used by Cholesky factorisation.
430+
431431 Examples
432432 --------
433433 >>> _chofactor(array([[25, 15, -5], [15, 18, 0], [-5, 0, 11]]))
@@ -534,10 +534,6 @@ def normrow(A):
534534def normalizerow (A , do_nan_to_num = True ):
535535 """Normalise the rows of matrix A.
536536
537- Note
538- ----
539- Tiling is not necessary, because of NumPy's broadcasting behaviour.
540-
541537 Parameters
542538 ----------
543539 A (array): Matrix A represented as an (m x n) array.
@@ -550,6 +546,10 @@ def normalizerow(A, do_nan_to_num=True):
550546 Normalises the row vectors of A by the normrows, i.e. creates an array of
551547 vectors where the row vectors have length of unity.
552548
549+ Note
550+ ----
551+ Tiling is not necessary, because of NumPy's broadcasting behaviour.
552+
553553 Examples
554554 --------
555555 >>> normalizerow(array([[2, -1, 3,], [1, 0, 1], [0, 2, -1]]))
@@ -642,10 +642,6 @@ def solve_with_known(A, b, x, known):
642642def spsolve_with_known (A , b , x , known ):
643643 """Solve (sparse) a system of linear equations with part of solution known.
644644
645- Note
646- ----
647- Same function as solve_with_known, but for sparse matrix A.
648-
649645 Parameters
650646 ----------
651647 A (array): Coefficient matrix (sparse) represented as an (m x n) array.
@@ -663,6 +659,10 @@ def spsolve_with_known(A, b, x, known):
663659
664660 \mathbf{A} \mathbf{x} = \mathbf{b}
665661
662+ Note
663+ ----
664+ Same function as solve_with_known, but for sparse matrix A.
665+
666666 Examples
667667 --------
668668 >>> A = array([[2, 1, 3], [2, 6, 8], [6, 8, 18]])
0 commit comments