|
| 1 | +from __future__ import absolute_import |
| 2 | +from __future__ import division |
| 3 | +from __future__ import print_function |
| 4 | + |
| 5 | +from compas.hpc.geometry import add_vectors_numba |
| 6 | +from compas.hpc.geometry import add_vectors_xy_numba |
| 7 | +from compas.hpc.geometry import cross_vectors_numba |
| 8 | +from compas.hpc.geometry import dot_vectors_numba |
| 9 | +from compas.hpc.geometry import length_vector_numba |
| 10 | +from compas.hpc.geometry import length_vector_xy_numba |
| 11 | +from compas.hpc.geometry import scale_vector_numba |
| 12 | +from compas.hpc.geometry import scale_vector_xy_numba |
| 13 | +from compas.hpc.geometry import subtract_vectors_numba |
| 14 | +from compas.hpc.geometry import subtract_vectors_xy_numba |
| 15 | +from compas.hpc.geometry import sum_vectors_numba |
| 16 | + |
| 17 | +from numba import f8 |
| 18 | +from numba import i8 |
| 19 | +from numba import jit |
| 20 | +from numba import prange |
| 21 | + |
| 22 | +from numpy import array |
| 23 | + |
| 24 | + |
| 25 | +__author__ = [ 'Andrew Liew <[email protected]>'] |
| 26 | +__copyright__ = 'Copyright 2017, BLOCK Research Group - ETH Zurich' |
| 27 | +__license__ = 'MIT License' |
| 28 | + |
| 29 | + |
| 30 | + |
| 31 | +__all__ = [ |
| 32 | + 'centroid_points_numba', |
| 33 | + 'centroid_points_xy_numba', |
| 34 | + 'midpoint_point_point_numba', |
| 35 | + 'midpoint_point_point_xy_numba', |
| 36 | + 'center_of_mass_polyline_numba', |
| 37 | + 'center_of_mass_polyline_xy_numba', |
| 38 | + # 'center_of_mass_polyhedron_numba', |
| 39 | +] |
| 40 | + |
| 41 | + |
| 42 | +@jit(f8[:](f8[:, :]), nogil=True, nopython=True, parallel=True) |
| 43 | +def centroid_points_numba(u): |
| 44 | + """Compute the centroid of a set of points. |
| 45 | +
|
| 46 | + Parameters |
| 47 | + ---------- |
| 48 | + u : array |
| 49 | + An array of XYZ coordinates. |
| 50 | +
|
| 51 | + Returns |
| 52 | + ------- |
| 53 | + array |
| 54 | + Centroid of the points. |
| 55 | + """ |
| 56 | + m = u.shape[0] |
| 57 | + f = 1 / m |
| 58 | + return scale_vector_numba(sum_vectors_numba(u, axis=0), factor=f) |
| 59 | + |
| 60 | + |
| 61 | +@jit(f8[:](f8[:, :]), nogil=True, nopython=True, parallel=True) |
| 62 | +def centroid_points_xy_numba(u): |
| 63 | + """Compute the centroid of a set of points lying in the XY plane. |
| 64 | +
|
| 65 | + Parameters |
| 66 | + ---------- |
| 67 | + u : array |
| 68 | + An array of XY(Z) coordinates in the XY plane. |
| 69 | +
|
| 70 | + Returns |
| 71 | + ------- |
| 72 | + array |
| 73 | + Centroid of the points (Z = 0.0). |
| 74 | + """ |
| 75 | + u[:, 2] = 0 |
| 76 | + return centroid_points_numba(u) |
| 77 | + |
| 78 | + |
| 79 | +@jit(f8[:](f8[:], f8[:]), nogil=True, nopython=True, parallel=True) |
| 80 | +def midpoint_point_point_numba(u, v): |
| 81 | + """Compute the midpoint of two points. |
| 82 | +
|
| 83 | + Parameters |
| 84 | + ---------- |
| 85 | + u : array |
| 86 | + XYZ coordinates of the first point. |
| 87 | + v : array |
| 88 | + XYZ coordinates of the second point. |
| 89 | +
|
| 90 | + Returns |
| 91 | + ------- |
| 92 | + array |
| 93 | + XYZ coordinates of the midpoint. |
| 94 | + """ |
| 95 | + return scale_vector_numba(add_vectors_numba(u, v), factor=0.5) |
| 96 | + |
| 97 | + |
| 98 | +@jit(f8[:](f8[:], f8[:]), nogil=True, nopython=True, parallel=True) |
| 99 | +def midpoint_point_point_xy_numba(u, v): |
| 100 | + """Compute the midpoint of two points lying in the XY-plane. |
| 101 | +
|
| 102 | + Parameters |
| 103 | + ---------- |
| 104 | + u : array |
| 105 | + XY(Z) coordinates of the first point in the XY plane. |
| 106 | + v : array |
| 107 | + XY(Z) coordinates of the second point in the XY plane. |
| 108 | +
|
| 109 | + Returns |
| 110 | + ------- |
| 111 | + array |
| 112 | + XYZ (Z = 0.0) coordinates of the midpoint. |
| 113 | + """ |
| 114 | + return scale_vector_xy_numba(add_vectors_xy_numba(u, v), factor=0.5) |
| 115 | + |
| 116 | + |
| 117 | +@jit(f8[:](f8[:, :]), nogil=True, nopython=True, parallel=False) |
| 118 | +def center_of_mass_polyline_numba(polyline): |
| 119 | + """Compute the center of mass of polyline edges defined as an array of points. |
| 120 | +
|
| 121 | + Parameters |
| 122 | + ---------- |
| 123 | + polyline : array |
| 124 | + XYZ coordinates representing the corners of a polyline (m x 3). |
| 125 | +
|
| 126 | + Returns |
| 127 | + ------- |
| 128 | + array |
| 129 | + The XYZ coordinates of the center of mass. |
| 130 | + """ |
| 131 | + L = 0 |
| 132 | + cx = 0 |
| 133 | + cy = 0 |
| 134 | + cz = 0 |
| 135 | + m = polyline.shape[0] |
| 136 | + ii = list(range(1, m)) + [0] |
| 137 | + for i in prange(m): |
| 138 | + p1 = polyline[i, :] |
| 139 | + p2 = polyline[ii[i], :] |
| 140 | + d = length_vector_numba(subtract_vectors_numba(p2, p1)) |
| 141 | + cx += 0.5 * d * (p1[0] + p2[0]) |
| 142 | + cy += 0.5 * d * (p1[1] + p2[1]) |
| 143 | + cz += 0.5 * d * (p1[2] + p2[2]) |
| 144 | + L += d |
| 145 | + c = array([cx, cy, cz]) |
| 146 | + f = 1 / L |
| 147 | + return scale_vector_numba(c, factor=f) |
| 148 | + |
| 149 | + |
| 150 | +@jit(f8[:](f8[:, :]), nogil=True, nopython=True, parallel=False) |
| 151 | +def center_of_mass_polyline_xy_numba(polyline): |
| 152 | + """Compute the center of mass of polyline edges in the XY plane, defined as an array of points. |
| 153 | +
|
| 154 | + Parameters |
| 155 | + ---------- |
| 156 | + polyline : array |
| 157 | + XY(Z) coordinates representing the corners of a polyline (m x 3). |
| 158 | +
|
| 159 | + Returns |
| 160 | + ------- |
| 161 | + array |
| 162 | + The XY(Z) coordinates of the center of mass. |
| 163 | + """ |
| 164 | + L = 0 |
| 165 | + cx = 0 |
| 166 | + cy = 0 |
| 167 | + m = polyline.shape[0] |
| 168 | + ii = list(range(1, m)) + [0] |
| 169 | + for i in prange(m): |
| 170 | + p1 = polyline[i, :] |
| 171 | + p2 = polyline[ii[i], :] |
| 172 | + d = length_vector_xy_numba(subtract_vectors_xy_numba(p2, p1)) |
| 173 | + cx += 0.5 * d * (p1[0] + p2[0]) |
| 174 | + cy += 0.5 * d * (p1[1] + p2[1]) |
| 175 | + L += d |
| 176 | + c = array([cx, cy, 0.]) |
| 177 | + f = 1 / L |
| 178 | + return scale_vector_numba(c, factor=f) |
| 179 | + |
| 180 | + |
| 181 | +@jit(f8[:](f8[:, :], i8[:, :]), nogil=True, nopython=True, parallel=False) # Needs checking |
| 182 | +def center_of_mass_polyhedron_numba(vertices, faces): |
| 183 | + """Compute the center of mass of the edges of a polyhedron. |
| 184 | +
|
| 185 | + Parameters |
| 186 | + ---------- |
| 187 | + vertices : array |
| 188 | + Array containing the XYZ coordinates of the polyhedron vertices (n x 3). |
| 189 | + faces : array |
| 190 | + Array contianing the indices of triangle faces of the polyhedron (m x 3). |
| 191 | +
|
| 192 | + Return |
| 193 | + ------ |
| 194 | + array |
| 195 | + The XYZ coordinates of the polyhedron edges' centre of mass. |
| 196 | + """ |
| 197 | + m = faces.shape[0] |
| 198 | + V = 0. |
| 199 | + x = 0. |
| 200 | + y = 0. |
| 201 | + z = 0. |
| 202 | + ex = array([1., 0., 0.]) |
| 203 | + ey = array([0., 1., 0.]) |
| 204 | + ez = array([0., 0., 1.]) |
| 205 | + ii = [1, 2, 0] |
| 206 | + |
| 207 | + for i in prange(m): |
| 208 | + a = vertices[faces[i, 0]] |
| 209 | + b = vertices[faces[i, 1]] |
| 210 | + c = vertices[faces[i, 2]] |
| 211 | + ab = subtract_vectors_numba(b, a) |
| 212 | + ac = subtract_vectors_numba(c, a) |
| 213 | + n = cross_vectors_numba(ab, ac) |
| 214 | + V += dot_vectors_numba(a, n) |
| 215 | + nx = dot_vectors_numba(n, ex) |
| 216 | + ny = dot_vectors_numba(n, ey) |
| 217 | + nz = dot_vectors_numba(n, ez) |
| 218 | + |
| 219 | + for k in prange(3): |
| 220 | + ab = add_vectors_numba(vertices[faces[i, k]], vertices[faces[i, ii[k]]]) |
| 221 | + x += nx * dot_vectors_numba(ab, ex)**2 |
| 222 | + y += ny * dot_vectors_numba(ab, ey)**2 |
| 223 | + z += nz * dot_vectors_numba(ab, ez)**2 |
| 224 | + |
| 225 | + if V < 10**(-9): |
| 226 | + V = 0. |
| 227 | + d = 1. / 48. |
| 228 | + else: |
| 229 | + V /= 6. |
| 230 | + d = 1. / 48. / V |
| 231 | + x *= d |
| 232 | + y *= d |
| 233 | + z *= d |
| 234 | + |
| 235 | + return array([x, y, z]) |
| 236 | + |
| 237 | + |
| 238 | +# ============================================================================== |
| 239 | +# Main |
| 240 | +# ============================================================================== |
| 241 | + |
| 242 | +if __name__ == "__main__": |
| 243 | + |
| 244 | + from time import time |
| 245 | + |
| 246 | + u = array([1., 2., 3.]) |
| 247 | + v = array([4., 5., 6.]) |
| 248 | + c = array([[0., 0., 1.], [3., 4., 1.], [6., 0., 1.]]) |
| 249 | + d = array([[0, 1, 2], [1, 2, 0]]) |
| 250 | + e = array([[0., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.]]) |
| 251 | + |
| 252 | + tic = time() |
| 253 | + |
| 254 | + for i in range(10**5): |
| 255 | + |
| 256 | + # centroid_points_numba(c) |
| 257 | + # centroid_points_xy_numba(c) |
| 258 | + # midpoint_point_point_numba(u, v) |
| 259 | + # midpoint_point_point_xy_numba(u, v) |
| 260 | + # center_of_mass_polyline_numba(c) |
| 261 | + # center_of_mass_polyline_xy_numba(c) |
| 262 | + center_of_mass_polyhedron_numba(c, array([[0, 1, 2]])) |
| 263 | + |
| 264 | + print(time() - tic) |
0 commit comments