|
| 1 | +"""Geodesic distance computation using CGAL heat method.""" |
| 2 | + |
| 3 | +from typing import List |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +from numpy.typing import NDArray |
| 7 | + |
| 8 | +from compas_cgal import _types_std # noqa: F401 # Load vector type bindings |
| 9 | +from compas_cgal._geodesics import geodesic_isolines as _geodesic_isolines |
| 10 | +from compas_cgal._geodesics import geodesic_isolines_split as _geodesic_isolines_split |
| 11 | +from compas_cgal._geodesics import heat_geodesic_distances as _heat_geodesic_distances |
| 12 | +from compas_cgal._geodesics import HeatGeodesicSolver as _HeatGeodesicSolver |
| 13 | +from compas_cgal.types import PolylinesNumpy |
| 14 | +from compas_cgal.types import VerticesFaces |
| 15 | +from compas_cgal.types import VerticesFacesNumpy |
| 16 | + |
| 17 | +__all__ = ["heat_geodesic_distances", "HeatGeodesicSolver", "geodesic_isolines_split", "geodesic_isolines"] |
| 18 | + |
| 19 | + |
| 20 | +def heat_geodesic_distances(mesh: VerticesFaces, sources: List[int]) -> NDArray: |
| 21 | + """Compute geodesic distances from source vertices using CGAL heat method. |
| 22 | +
|
| 23 | + Uses CGAL's Heat_method_3 with intrinsic Delaunay triangulation for |
| 24 | + accurate geodesic distance computation. |
| 25 | +
|
| 26 | + Parameters |
| 27 | + ---------- |
| 28 | + mesh : :attr:`compas_cgal.types.VerticesFaces` |
| 29 | + A triangulated mesh as a tuple of vertices and faces. |
| 30 | + sources : List[int] |
| 31 | + Source vertex indices. |
| 32 | +
|
| 33 | + Returns |
| 34 | + ------- |
| 35 | + NDArray |
| 36 | + Geodesic distances from the nearest source to each vertex. |
| 37 | + Shape is (n_vertices,). |
| 38 | +
|
| 39 | + Examples |
| 40 | + -------- |
| 41 | + >>> from compas.geometry import Box |
| 42 | + >>> from compas_cgal.geodesics import heat_geodesic_distances |
| 43 | + >>> box = Box(1) |
| 44 | + >>> mesh = box.to_vertices_and_faces(triangulated=True) |
| 45 | + >>> distances = heat_geodesic_distances(mesh, [0]) # distances from vertex 0 |
| 46 | +
|
| 47 | + """ |
| 48 | + V, F = mesh |
| 49 | + V = np.asarray(V, dtype=np.float64, order="C") |
| 50 | + F = np.asarray(F, dtype=np.int32, order="C") |
| 51 | + |
| 52 | + result = _heat_geodesic_distances(V, F, sources) |
| 53 | + return result.flatten() |
| 54 | + |
| 55 | + |
| 56 | +class HeatGeodesicSolver: |
| 57 | + """Precomputed heat method solver for repeated geodesic queries. |
| 58 | +
|
| 59 | + Use this class when computing geodesic distances from multiple |
| 60 | + different sources on the same mesh. The expensive precomputation |
| 61 | + is done once in the constructor, and solve() can be called many |
| 62 | + times efficiently. |
| 63 | +
|
| 64 | + Parameters |
| 65 | + ---------- |
| 66 | + mesh : :attr:`compas_cgal.types.VerticesFaces` |
| 67 | + A triangulated mesh as a tuple of vertices and faces. |
| 68 | +
|
| 69 | + Examples |
| 70 | + -------- |
| 71 | + >>> from compas.geometry import Sphere |
| 72 | + >>> from compas_cgal.geodesics import HeatGeodesicSolver |
| 73 | + >>> sphere = Sphere(1.0) |
| 74 | + >>> mesh = sphere.to_vertices_and_faces(u=32, v=32, triangulated=True) |
| 75 | + >>> solver = HeatGeodesicSolver(mesh) # precomputation happens here |
| 76 | + >>> d0 = solver.solve([0]) # distances from vertex 0 |
| 77 | + >>> d1 = solver.solve([1]) # distances from vertex 1 (fast, reuses precomputation) |
| 78 | +
|
| 79 | + """ |
| 80 | + |
| 81 | + def __init__(self, mesh: VerticesFaces) -> None: |
| 82 | + V, F = mesh |
| 83 | + V = np.asarray(V, dtype=np.float64, order="C") |
| 84 | + F = np.asarray(F, dtype=np.int32, order="C") |
| 85 | + self._solver = _HeatGeodesicSolver(V, F) |
| 86 | + |
| 87 | + def solve(self, sources: List[int]) -> NDArray: |
| 88 | + """Compute geodesic distances from source vertices. |
| 89 | +
|
| 90 | + Parameters |
| 91 | + ---------- |
| 92 | + sources : List[int] |
| 93 | + Source vertex indices. |
| 94 | +
|
| 95 | + Returns |
| 96 | + ------- |
| 97 | + NDArray |
| 98 | + Geodesic distances from the nearest source to each vertex. |
| 99 | + Shape is (n_vertices,). |
| 100 | +
|
| 101 | + """ |
| 102 | + result = self._solver.solve(sources) |
| 103 | + return result.flatten() |
| 104 | + |
| 105 | + @property |
| 106 | + def num_vertices(self) -> int: |
| 107 | + """Number of vertices in the mesh.""" |
| 108 | + return self._solver.num_vertices |
| 109 | + |
| 110 | + |
| 111 | +def geodesic_isolines_split( |
| 112 | + mesh: VerticesFaces, |
| 113 | + sources: List[int], |
| 114 | + isovalues: List[float], |
| 115 | +) -> List[VerticesFacesNumpy]: |
| 116 | + """Split mesh into components along geodesic isolines. |
| 117 | +
|
| 118 | + Computes geodesic distances from sources, refines the mesh along |
| 119 | + specified isovalue thresholds, and splits into connected components. |
| 120 | +
|
| 121 | + Parameters |
| 122 | + ---------- |
| 123 | + mesh : :attr:`compas_cgal.types.VerticesFaces` |
| 124 | + A triangulated mesh as a tuple of vertices and faces. |
| 125 | + sources : List[int] |
| 126 | + Source vertex indices for geodesic distance computation. |
| 127 | + isovalues : List[float] |
| 128 | + Isovalue thresholds for splitting. The mesh will be refined |
| 129 | + along curves where the geodesic distance equals each isovalue, |
| 130 | + then split into connected components. |
| 131 | +
|
| 132 | + Returns |
| 133 | + ------- |
| 134 | + List[:attr:`compas_cgal.types.VerticesFacesNumpy`] |
| 135 | + List of mesh components as (vertices, faces) tuples. |
| 136 | +
|
| 137 | + Examples |
| 138 | + -------- |
| 139 | + >>> from compas.geometry import Sphere |
| 140 | + >>> from compas_cgal.geodesics import geodesic_isolines_split |
| 141 | + >>> sphere = Sphere(1.0) |
| 142 | + >>> mesh = sphere.to_vertices_and_faces(u=32, v=32, triangulated=True) |
| 143 | + >>> components = geodesic_isolines_split(mesh, [0], [0.5, 1.0, 1.5]) |
| 144 | + >>> len(components) # Number of mesh strips |
| 145 | +
|
| 146 | + """ |
| 147 | + V, F = mesh |
| 148 | + V = np.asarray(V, dtype=np.float64, order="C") |
| 149 | + F = np.asarray(F, dtype=np.int32, order="C") |
| 150 | + |
| 151 | + vertices_list, faces_list = _geodesic_isolines_split(V, F, sources, isovalues) |
| 152 | + return list(zip(vertices_list, faces_list)) |
| 153 | + |
| 154 | + |
| 155 | +def geodesic_isolines( |
| 156 | + mesh: VerticesFaces, |
| 157 | + sources: List[int], |
| 158 | + isovalues: List[float], |
| 159 | +) -> PolylinesNumpy: |
| 160 | + """Extract isoline polylines from geodesic distance field. |
| 161 | +
|
| 162 | + Computes geodesic distances and extracts polylines along specified isovalues. |
| 163 | +
|
| 164 | + Parameters |
| 165 | + ---------- |
| 166 | + mesh : :attr:`compas_cgal.types.VerticesFaces` |
| 167 | + A triangulated mesh as a tuple of vertices and faces. |
| 168 | + sources : List[int] |
| 169 | + Source vertex indices for geodesic distance computation. |
| 170 | + isovalues : List[float] |
| 171 | + Isovalue thresholds for isoline extraction. |
| 172 | +
|
| 173 | + Returns |
| 174 | + ------- |
| 175 | + :attr:`compas_cgal.types.PolylinesNumpy` |
| 176 | + List of polyline segments as Nx3 arrays of points. |
| 177 | +
|
| 178 | + """ |
| 179 | + V, F = mesh |
| 180 | + V = np.asarray(V, dtype=np.float64, order="C") |
| 181 | + F = np.asarray(F, dtype=np.int32, order="C") |
| 182 | + |
| 183 | + return list(_geodesic_isolines(V, F, sources, isovalues)) |
0 commit comments