@@ -58,10 +58,14 @@ def frequency_mapping(frequencies, values, animal="mouse", transduction_efficien
5858    # "M_LR_000214_L": ["PV", "CR", "Calb1"], 
5959    "M_LR_000184_R" : ["PV" , "Prph" ],
6060    "M_LR_000184_L" : ["PV" , "Prph" ],
61+     "M_LR_000098_L" : ["PV" , "CR" , "Ntng1" ],
62+     "M_LR_N152_L" : ["PV" , "CR" , "Ntng1" ],
6163    # "M_LR_000260_L": ["PV", "Prph", "Tuj1"], 
6264}
6365
6466COCHLEAE  =  {
67+     "M_LR_N152_L" : {"seg_data" : "SGN_v2" , "subtype" : ["CR" , "Ntng1" ], "component_list" : [1 , 2 ]},
68+     "M_LR_000098_L" : {"seg_data" : "SGN_v2" , "subtype" : ["CR" , "Ntng1" ], "component_list" : [1 , 2 ]},
6569    "M_LR_000099_L" : {"seg_data" : "PV_SGN_v2" , "subtype" : ["Calb1" , "Lypd1" ]},
6670    "M_LR_000184_L" : {"seg_data" : "SGN_v2" , "subtype" : ["Prph" ], "output_seg" : "SGN_v2b" },
6771    "M_LR_000184_R" : {"seg_data" : "SGN_v2" , "subtype" : ["Prph" ], "output_seg" : "SGN_v2b" },
@@ -71,7 +75,7 @@ def frequency_mapping(frequencies, values, animal="mouse", transduction_efficien
7175
7276
7377REGULAR_COCHLEAE  =  [
74-     "M_LR_000099_L" , "M_LR_000184_R" , "M_LR_000184_L" ,  # "M_LR_000260_L" 
78+     "M_LR_000099_L" , "M_LR_000184_R" , "M_LR_000184_L" , "M_LR_000098_L" ,  "M_LR_N152_L"    # "M_LR_000260_L" 
7579]
7680
7781# For custom thresholds. 
@@ -300,7 +304,10 @@ def compile_data_for_subtype_analysis():
300304        table  =  pd .read_csv (table_content , sep = "\t " )
301305
302306        # Get the SGNs in the main component 
303-         table  =  table [table .component_labels  ==  1 ]
307+         component_list  =  [1 ]
308+         if  "component_list"  in  list (COCHLEAE [cochlea ].keys ()):
309+             component_list  =  COCHLEAE [cochlea ]["component_list" ]
310+         table  =  table [table ["component_labels" ].isin (component_list )]
304311        print ("Number of SGNs" , len (table ))
305312        valid_sgns  =  table .label_id 
306313
@@ -315,7 +322,7 @@ def compile_data_for_subtype_analysis():
315322            )
316323            table_content  =  s3 .open (os .path .join (table_folder , "default.tsv" ), mode = "rb" )
317324            table  =  pd .read_csv (table_content , sep = "\t " )
318-             table  =  table [table . component_labels   ==   1 ]
325+             table  =  table [table [ " component_labels" ]. isin ( component_list ) ]
319326
320327            # local 
321328            table_name  =  f"{ channel }  _{ seg_name .replace ('_' , '-' )}  _object-measures.tsv" 
0 commit comments