Skip to content

Commit 2d0e2a0

Browse files
committed
Add neuromast data
1 parent 794e46c commit 2d0e2a0

File tree

1 file changed

+16
-5
lines changed

1 file changed

+16
-5
lines changed

development/prepare_czi_zebrafish_data.py

Lines changed: 16 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,9 @@
44
import dask.array as da
55

66

7-
def get_czi_zebrafish_data(view: bool = False) -> da.Array:
7+
def get_czi_zebrafish_data(
8+
neuromast: bool = True, view: bool = False
9+
) -> da.Array:
810
"""Gets the CZI ZebraFish light-sheet microscopy data.
911
NOTE: Currently, we support only the raw data.
1012
@@ -15,20 +17,29 @@ def get_czi_zebrafish_data(view: bool = False) -> da.Array:
1517
The daskified chunky array.
1618
"""
1719
# NOTE: Let's try for one link first, we can generalize it later.
18-
url = "https://public.czbiohub.org/royerlab/ultrack/zebrafish_embryo.ome.zarr"
1920

21+
if neuromast:
22+
# Link for nuclear and membrane labeled zebrafish neuromast.
23+
url = "https://public.czbiohub.org/royerlab/ultrack/zebrafish_neuromast.ome.zarr"
24+
else:
25+
# Link for dense nuclear labeled zebrafish embryo.
26+
# NOTE: This data does not have tracking annotations!
27+
url = "https://public.czbiohub.org/royerlab/ultrack/zebrafish_embryo.ome.zarr"
28+
29+
# First, let's get the image data
2030
reader = Reader(parse_url(url)) # Prepare a reader.
2131
nodes = list(reader()) # Might include multiple stuff
2232
image_node = nodes[0] # First node is expecte to be image pixel data.
2333

2434
dask_data = image_node.data # Get the daskified data.
2535

2636
# HACK: Try it for one dask array with lowest resolution (there exists four resolutions in this data).
27-
curr_data = dask_data[-1] # TODO: Control dimensions from here, the highest res starts at the first index.
37+
# TODO: Control res below, the highest res starts at the first index, lowest at the last index.
38+
curr_data = dask_data[-1]
2839

2940
# We don't care about the over-time information. Let's get the 3d info for now!
3041
# I am removing the channel dimension here (OG dimension style: (T, C, Z, Y, X))
31-
curr_data = curr_data[:, 0] # TODO: Parse values in the time or z-dimension to parse limited slices?
42+
curr_data = curr_data[:, 0] # TODO: Parse values in the time or z-dimension to access limited slices?
3243

3344
# NOTE: The following line of code brings the entire dask array in memory.
3445
# curr_data = curr_data.compute()
@@ -42,7 +53,7 @@ def get_czi_zebrafish_data(view: bool = False) -> da.Array:
4253

4354

4455
def main():
45-
image = get_czi_zebrafish_data(view=False)
56+
image = get_czi_zebrafish_data(neuromast=True, view=False)
4657
print(image.shape)
4758

4859

0 commit comments

Comments
 (0)