@@ -60,11 +60,14 @@ def prediction_impl(input_path, input_key, output_folder, model_path, scale, blo
6060
6161 if input_key is None :
6262 input_ = imageio .imread (input_path )
63+ chunks = (64 , 64 , 64 )
6364 elif s3 is not None :
6465 with zarr .open (input_path , mode = "r" ) as f :
6566 input_ = f [input_key ]
67+ chunks = input_ .chunks ()
6668 else :
6769 input_ = open_file (input_path , "r" )[input_key ]
70+ chunks = (64 , 64 , 64 )
6871
6972 if scale is None or scale == 1 :
7073 original_shape = None
@@ -95,7 +98,7 @@ def prediction_impl(input_path, input_key, output_folder, model_path, scale, blo
9598 # Compute the global mean and standard deviation.
9699 n_threads = min (16 , mp .cpu_count ())
97100 mean , std = parallel .mean_and_std (
98- input_ , block_shape = tuple ([2 * i for i in input_ . chunks ]), n_threads = n_threads , verbose = True ,
101+ input_ , block_shape = tuple ([2 * i for i in chunks ]), n_threads = n_threads , verbose = True ,
99102 mask = image_mask
100103 )
101104 print ("Mean and standard deviation computed for the full volume:" )
@@ -163,7 +166,7 @@ def find_mask(input_path, input_key, output_folder, s3=None):
163166 else :
164167 fin = open_file (input_path , "r" )
165168 raw = fin [input_key ]
166- chunks = raw . chunks
169+ chunks = ( 64 , 64 , 64 )
167170
168171 block_shape = tuple (2 * ch for ch in chunks )
169172 blocking = nt .blocking ([0 , 0 , 0 ], raw .shape , block_shape )
0 commit comments