|
| 1 | +import os |
| 2 | +from glob import glob |
| 3 | + |
| 4 | +import torch |
| 5 | +from torch_em.util import load_model |
| 6 | +from flamingo_tools.training import mean_teacher_training |
| 7 | + |
| 8 | + |
| 9 | +def get_paths(): |
| 10 | + root = "/mnt/vast-nhr/projects/nim00007/data/moser/cochlea-lightsheet/training_data/IHC/2025-05-IHC_semi-supervised" |
| 11 | + annotated_folders = ["annotated_train", "empty"] |
| 12 | + train_image = [] |
| 13 | + train_label = [] |
| 14 | + for folder in annotated_folders: |
| 15 | + with os.scandir(os.path.join(root, folder)) as direc: |
| 16 | + for entry in direc: |
| 17 | + if "annotations" not in entry.name and entry.is_file(): |
| 18 | + basename = os.path.basename(entry.name) |
| 19 | + name_no_extension = ".".join(basename.split(".")[:-1]) |
| 20 | + label_name = name_no_extension + "_annotations.tif" |
| 21 | + train_image.extend(glob(os.path.join(root, folder, entry.name))) |
| 22 | + train_label.extend(glob(os.path.join(root, folder, label_name))) |
| 23 | + |
| 24 | + annotated_folders = ["annotated_val"] |
| 25 | + val_image = [] |
| 26 | + val_label = [] |
| 27 | + for folder in annotated_folders: |
| 28 | + with os.scandir(os.path.join(root, folder)) as direc: |
| 29 | + for entry in direc: |
| 30 | + if "annotations" not in entry.name and entry.is_file(): |
| 31 | + basename = os.path.basename(entry.name) |
| 32 | + name_no_extension = ".".join(basename.split(".")[:-1]) |
| 33 | + label_name = name_no_extension + "_annotations.tif" |
| 34 | + val_image.extend(glob(os.path.join(root, folder, entry.name))) |
| 35 | + val_label.extend(glob(os.path.join(root, folder, label_name))) |
| 36 | + |
| 37 | + domain_folders = ["domain_Aleyna", "domain_Lennart"] |
| 38 | + paths_domain = [] |
| 39 | + for folder in domain_folders: |
| 40 | + paths_domain.extend(glob(os.path.join(root, folder, "*.tif"))) |
| 41 | + |
| 42 | + return train_image, train_label, val_image, val_label, paths_domain[:-2], paths_domain[-2:] |
| 43 | + |
| 44 | + |
| 45 | +def run_training(name): |
| 46 | + patch_shape = (64, 128, 128) |
| 47 | + batch_size = 8 |
| 48 | + |
| 49 | + super_train_img, super_train_label, super_val_img, super_val_label, unsuper_train, unsuper_val = get_paths() |
| 50 | + |
| 51 | + mean_teacher_training( |
| 52 | + name=name, |
| 53 | + unsupervised_train_paths=unsuper_train, |
| 54 | + unsupervised_val_paths=unsuper_val, |
| 55 | + patch_shape=patch_shape, |
| 56 | + supervised_train_image_paths=super_train_img, |
| 57 | + supervised_val_image_paths=super_val_img, |
| 58 | + supervised_train_label_paths=super_train_label, |
| 59 | + supervised_val_label_paths=super_val_label, |
| 60 | + batch_size=batch_size, |
| 61 | + n_iterations=int(1e5), |
| 62 | + n_samples_train=1000, |
| 63 | + n_samples_val=80, |
| 64 | + ) |
| 65 | + |
| 66 | + |
| 67 | +def export_model(name, export_path): |
| 68 | + model = load_model(os.path.join("checkpoints", name), state_key="teacher") |
| 69 | + torch.save(model, export_path) |
| 70 | + |
| 71 | + |
| 72 | +def main(): |
| 73 | + import argparse |
| 74 | + |
| 75 | + parser = argparse.ArgumentParser() |
| 76 | + parser.add_argument("--export_path") |
| 77 | + args = parser.parse_args() |
| 78 | + name = "IHC_semi-supervised_2025-05-22" |
| 79 | + if args.export_path is None: |
| 80 | + run_training(name) |
| 81 | + else: |
| 82 | + export_model(name, args.export_path) |
| 83 | + |
| 84 | + |
| 85 | +if __name__ == "__main__": |
| 86 | + main() |
0 commit comments