|
| 1 | +import argparse |
| 2 | +import os |
| 3 | +from shutil import rmtree |
| 4 | + |
| 5 | +import pybdv.metadata as bdv_metadata |
| 6 | +import torch |
| 7 | +import z5py |
| 8 | + |
| 9 | +from flamingo_tools.segmentation import run_unet_prediction, filter_isolated_objects |
| 10 | +from flamingo_tools.mobie import add_raw_to_mobie, add_segmentation_to_mobie |
| 11 | + |
| 12 | +MOBIE_ROOT = "/mnt/lustre-emmy-hdd/projects/nim00007/data/moser/lightsheet/mobie" |
| 13 | + |
| 14 | + |
| 15 | +def postprocess_seg(output_folder): |
| 16 | + print("Run segmentation postprocessing ...") |
| 17 | + seg_path = os.path.join(output_folder, "segmentation.zarr") |
| 18 | + seg_key = "segmentation" |
| 19 | + |
| 20 | + with z5py.File(seg_path, "r") as f: |
| 21 | + segmentation = f[seg_key][:] |
| 22 | + |
| 23 | + seg_filtered, n_pre, n_post = filter_isolated_objects(segmentation) |
| 24 | + |
| 25 | + with z5py.File(seg_path, "a") as f: |
| 26 | + chunks = f[seg_key].chunks |
| 27 | + f.create_dataset( |
| 28 | + "segmentation_postprocessed", data=seg_filtered, compression="gzip", |
| 29 | + chunks=chunks, dtype=seg_filtered.dtype |
| 30 | + ) |
| 31 | + |
| 32 | + |
| 33 | +def export_to_mobie(xml_path, segmentation_folder, scale, mobie_dataset, chunks): |
| 34 | + # Add to mobie: |
| 35 | + |
| 36 | + # - raw data (if not yet present) |
| 37 | + add_raw_to_mobie( |
| 38 | + mobie_project=MOBIE_ROOT, |
| 39 | + mobie_dataset=mobie_dataset, |
| 40 | + source_name="pv-channel", |
| 41 | + xml_path=xml_path, |
| 42 | + setup_id=0, |
| 43 | + ) |
| 44 | + |
| 45 | + # TODO enable passing extra channel names |
| 46 | + # - additional channels |
| 47 | + setup_ids = bdv_metadata.get_setup_ids(xml_path) |
| 48 | + if len(setup_ids) > 1: |
| 49 | + extra_channel_names = ["gfp_channel", "myo_channel"] |
| 50 | + for i, setup_id in enumerate(setup_ids[1:]): |
| 51 | + add_raw_to_mobie( |
| 52 | + mobie_project=MOBIE_ROOT, |
| 53 | + mobie_dataset=mobie_dataset, |
| 54 | + source_name=extra_channel_names[i], |
| 55 | + xml_path=xml_path, |
| 56 | + setup_id=setup_id |
| 57 | + ) |
| 58 | + |
| 59 | + # - segmentation and post-processed segmentation |
| 60 | + seg_path = os.path.join(segmentation_folder, "segmentation.zarr") |
| 61 | + seg_resolution = bdv_metadata.get_resolution(xml_path, setup_id=0) |
| 62 | + if scale == 1: |
| 63 | + seg_resolution = [2 * res for res in seg_resolution] |
| 64 | + unit = bdv_metadata.get_unit(xml_path, setup_id=0) |
| 65 | + |
| 66 | + seg_key = "segmentation" |
| 67 | + seg_name = "nuclei_fullscale" if scale == 0 else "nuclei_downscaled" |
| 68 | + add_segmentation_to_mobie( |
| 69 | + mobie_project=MOBIE_ROOT, |
| 70 | + mobie_dataset=mobie_dataset, |
| 71 | + source_name=seg_name, |
| 72 | + segmentation_path=seg_path, |
| 73 | + segmentation_key=seg_key, |
| 74 | + resolution=seg_resolution, |
| 75 | + unit=unit, |
| 76 | + scale_factors=4*[[2, 2, 2]], |
| 77 | + chunks=chunks, |
| 78 | + ) |
| 79 | + |
| 80 | + seg_key = "segmentation_postprocessed" |
| 81 | + seg_name += "_postprocessed" |
| 82 | + add_segmentation_to_mobie( |
| 83 | + mobie_project=MOBIE_ROOT, |
| 84 | + mobie_dataset=mobie_dataset, |
| 85 | + source_name=seg_name, |
| 86 | + segmentation_path=seg_path, |
| 87 | + segmentation_key=seg_key, |
| 88 | + resolution=seg_resolution, |
| 89 | + unit=unit, |
| 90 | + scale_factors=4*[[2, 2, 2]], |
| 91 | + chunks=chunks, |
| 92 | + ) |
| 93 | + |
| 94 | + |
| 95 | +def main(): |
| 96 | + parser = argparse.ArgumentParser() |
| 97 | + parser.add_argument("-i", "--input", required=True) |
| 98 | + parser.add_argument("-o", "--output_folder", required=True) |
| 99 | + parser.add_argument("-s", "--scale", required=True, type=int) |
| 100 | + parser.add_argument("-m", "--mobie_dataset", required=True) |
| 101 | + parser.add_argument("--model") |
| 102 | + |
| 103 | + args = parser.parse_args() |
| 104 | + |
| 105 | + scale = args.scale |
| 106 | + if scale == 0: |
| 107 | + min_size = 1000 |
| 108 | + elif scale == 1: |
| 109 | + min_size = 250 |
| 110 | + else: |
| 111 | + raise ValueError |
| 112 | + |
| 113 | + xml_path = args.input |
| 114 | + assert os.path.splitext(xml_path)[1] == ".xml" |
| 115 | + input_path = bdv_metadata.get_data_path(xml_path, return_absolute_path=True) |
| 116 | + |
| 117 | + # TODO need to make sure that PV is always setup 0 |
| 118 | + input_key = f"setup0/timepoint0/s{scale}" |
| 119 | + |
| 120 | + have_cuda = torch.cuda.is_available() |
| 121 | + chunks = z5py.File(input_path, "r")[input_key].chunks |
| 122 | + block_shape = tuple([2 * ch for ch in chunks]) if have_cuda else tuple(chunks) |
| 123 | + halo = (16, 64, 64) if have_cuda else (8, 32, 32) |
| 124 | + |
| 125 | + if args.model is not None: |
| 126 | + model = args.model |
| 127 | + else: |
| 128 | + if scale == 0: |
| 129 | + model = "../training/checkpoints/cochlea_distance_unet" |
| 130 | + else: |
| 131 | + model = "../training/checkpoints/cochlea_distance_unet-train-downsampled" |
| 132 | + |
| 133 | + run_unet_prediction( |
| 134 | + input_path, input_key, args.output_folder, model, |
| 135 | + scale=None, min_size=min_size, |
| 136 | + block_shape=block_shape, halo=halo, |
| 137 | + ) |
| 138 | + |
| 139 | + postprocess_seg(args.output_folder) |
| 140 | + |
| 141 | + export_to_mobie(xml_path, args.output_folder, scale, args.mobie_dataset, chunks) |
| 142 | + |
| 143 | + # clean up: remove segmentation folders |
| 144 | + print("Cleaning up intermediate segmentation results") |
| 145 | + print("This may take a while, but everything else is done.") |
| 146 | + print("You can check the results in the MoBIE project already at:") |
| 147 | + print(f"{MOBIE_ROOT}:{args.mobie_dataset}") |
| 148 | + rmtree(args.output_folder) |
| 149 | + |
| 150 | + |
| 151 | +if __name__ == "__main__": |
| 152 | + main() |
0 commit comments