@@ -290,8 +290,8 @@ def downscaled_centroids(
290290 new_array [int (c [0 ]), int (c [1 ]), int (c [2 ])] += 1
291291
292292 elif downsample_mode == "capped" :
293- new_array = np . round ( new_array ). astype ( int )
294- new_array [new_array >= 1 ] = 1
293+ for c in centroids_scaled :
294+ new_array [int ( c [ 0 ]), int ( c [ 1 ]), int ( c [ 2 ]) ] = 1
295295
296296 elif downsample_mode == "components" :
297297 if "component_labels" not in table .columns :
@@ -300,11 +300,12 @@ def downscaled_centroids(
300300 for comp , centr in zip (component_labels , centroids_scaled ):
301301 if comp != 0 :
302302 new_array [int (centr [0 ]), int (centr [1 ]), int (centr [2 ])] = comp
303- new_array = np .round (new_array ).astype (int )
304303
305304 else :
306305 raise ValueError ("Choose one of the downsampling modes 'accumulated', 'capped', or 'components'." )
307306
307+ new_array = np .round (new_array ).astype (int )
308+
308309 return new_array
309310
310311
@@ -531,7 +532,7 @@ def component_labels_graph(table: pd.DataFrame) -> List[int]:
531532 component_labels = [0 for _ in range (len (table ))]
532533 for lab , comp in enumerate (components ):
533534 for comp_index in comp :
534- component_labels [comp_index ] = lab + 1
535+ component_labels [comp_index - 1 ] = lab + 1
535536
536537 return component_labels
537538
0 commit comments