|
| 1 | +import os |
| 2 | +import subprocess |
| 3 | +from typing import Tuple |
| 4 | + |
| 5 | +import pandas as pd |
| 6 | + |
| 7 | +from ome_zarr.io import parse_url |
| 8 | +from ome_zarr.reader import Reader |
| 9 | + |
| 10 | +import dask.array as da |
| 11 | + |
| 12 | + |
| 13 | +def _get_dasky_data(url): |
| 14 | + reader = Reader(parse_url(url)) # Prepare a reader. |
| 15 | + nodes = list(reader()) # Might include multiple stuff |
| 16 | + image_node = nodes[0] # First node is expected to be image pixel data. |
| 17 | + |
| 18 | + dask_data = image_node.data # Get the daskified data. |
| 19 | + |
| 20 | + return dask_data |
| 21 | + |
| 22 | + |
| 23 | +def get_zebrahub_data(timepoint: int = 740, view: bool = False) -> Tuple[da.Array, pd.DataFrame]: |
| 24 | + """Gets the ZebraHub data from https://doi.org/10.1016/j.cell.2024.09.047. |
| 25 | +
|
| 26 | + Args: |
| 27 | + timepoint: The timepoint where the 3d imaging data will be returned from. |
| 28 | + view: Whether to view the dask array via napari. |
| 29 | +
|
| 30 | + Returns: |
| 31 | + The daskified chunky array. |
| 32 | + And the tracking annotations. |
| 33 | + """ |
| 34 | + # NOTE: There's more single objective samples for zebrafish available with tracking annotations |
| 35 | + # https://public.czbiohub.org/royerlab/zebrahub/imaging/single-objective/ |
| 36 | + url = "https://public.czbiohub.org/royerlab/zebrahub/imaging/single-objective/ZSNS001.ome.zarr" |
| 37 | + |
| 38 | + # Let's get the image data. |
| 39 | + dask_data = _get_dasky_data(url) |
| 40 | + |
| 41 | + # Get the lowest resolution (see below on how to access other resolutions) |
| 42 | + curr_data = dask_data[-1] |
| 43 | + |
| 44 | + # And strip out the channel dimension (see below for more details) |
| 45 | + curr_data = curr_data[timepoint, 0] |
| 46 | + |
| 47 | + # We have tracking annotations here. Let's check them out. |
| 48 | + tracks_fpath = "ZSNS001_tracks.csv" |
| 49 | + if not os.path.exists(tracks_fpath): |
| 50 | + subprocess.run( |
| 51 | + ["wget", "https://public.czbiohub.org/royerlab/zebrahub/imaging/single-objective/ZSNS001_tracks.csv"] |
| 52 | + ) |
| 53 | + |
| 54 | + # Load the tracking annotation file. |
| 55 | + tracks = pd.read_csv("ZSNS001_tracks.csv") # I think this is on original resolution (?) |
| 56 | + |
| 57 | + # HACK: Filtering ids based on one time-frame (the most plausible setup we might be opting for) |
| 58 | + curr_tracks = tracks.loc[tracks["t"] == timepoint] |
| 59 | + |
| 60 | + if view: |
| 61 | + import napari |
| 62 | + napari.view_image(curr_data) |
| 63 | + napari.run() |
| 64 | + |
| 65 | + return curr_data, curr_tracks |
| 66 | + |
| 67 | + |
| 68 | +def get_czi_zebrafish_data( |
| 69 | + neuromast: bool = True, view: bool = False |
| 70 | +) -> da.Array: |
| 71 | + """Gets the CZI ZebraFish light-sheet microscopy data. |
| 72 | + NOTE: Currently, we support only the raw data. |
| 73 | +
|
| 74 | + Args: |
| 75 | + view: Whether to view the dask array via napari. |
| 76 | +
|
| 77 | + Returns: |
| 78 | + The daskified chunky array. |
| 79 | + """ |
| 80 | + # NOTE: Let's try for one link first, we can generalize it later. |
| 81 | + |
| 82 | + if neuromast: |
| 83 | + # Link for nuclear and membrane labeled zebrafish neuromast. |
| 84 | + url = "https://public.czbiohub.org/royerlab/ultrack/zebrafish_neuromast.ome.zarr" |
| 85 | + else: |
| 86 | + # Link for dense nuclear labeled zebrafish embryo. |
| 87 | + # NOTE: This data does not have tracking annotations! |
| 88 | + url = "https://public.czbiohub.org/royerlab/ultrack/zebrafish_embryo.ome.zarr" |
| 89 | + |
| 90 | + # Let's get the image data |
| 91 | + dask_data = _get_dasky_data(url) |
| 92 | + |
| 93 | + # HACK: Try it for one dask array with lowest resolution (there exists four resolutions in this data). |
| 94 | + # TODO: Control res below, the highest res starts at the first index, lowest at the last index. |
| 95 | + curr_data = dask_data[-1] |
| 96 | + |
| 97 | + # We don't care about the over-time information. Let's get the 3d info for now! |
| 98 | + # I am removing the channel dimension here (OG dimension style: (T, C, Z, Y, X)) |
| 99 | + curr_data = curr_data[:, 0] # TODO: Parse values in the time or z-dimension to access limited slices? |
| 100 | + |
| 101 | + # NOTE: The following line of code brings the entire dask array in memory. |
| 102 | + # curr_data = curr_data.compute() |
| 103 | + |
| 104 | + if view: |
| 105 | + import napari |
| 106 | + napari.view_image(curr_data) |
| 107 | + napari.run() |
| 108 | + |
| 109 | + return curr_data |
| 110 | + |
| 111 | + |
| 112 | +def main(): |
| 113 | + # image = get_czi_zebrafish_data(neuromast=True, view=False) |
| 114 | + |
| 115 | + # Suggested timepoints I like in the developmental cycle: |
| 116 | + # 740/760: kind of at the end of cycle. |
| 117 | + # 650: it's a nice development stage which visually surfaces a lot of nucleus. |
| 118 | + |
| 119 | + image, tracks = get_zebrahub_data(timepoint=740, view=False) |
| 120 | + print(image.shape) |
| 121 | + |
| 122 | + |
| 123 | +if __name__ == "__main__": |
| 124 | + main() |
0 commit comments