|
| 1 | + |
| 2 | +import os |
| 3 | +from tqdm import tqdm |
| 4 | +import imageio.v2 as imageio |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +from torch_em.data import MinInstanceSampler |
| 8 | +from torch_em.transform.label import label_consecutive |
| 9 | +from torch_em.data.datasets import get_tissuenet_loader |
| 10 | +from torch_em.transform.raw import standardize, normalize_percentile |
| 11 | + |
| 12 | + |
| 13 | +def rgb_to_gray_transform(raw): |
| 14 | + raw = normalize_percentile(raw, axis=(1, 2)) |
| 15 | + raw = np.mean(raw, axis=0) |
| 16 | + raw = standardize(raw) |
| 17 | + return raw |
| 18 | + |
| 19 | + |
| 20 | +def get_tissuenet_loaders(input_path): |
| 21 | + sampler = MinInstanceSampler() |
| 22 | + label_transform = label_consecutive |
| 23 | + raw_transform = rgb_to_gray_transform |
| 24 | + val_loader = get_tissuenet_loader(path=input_path, split="val", raw_channel="rgb", label_channel="cell", |
| 25 | + batch_size=1, patch_shape=(256, 256), num_workers=0, |
| 26 | + sampler=sampler, label_transform=label_transform, raw_transform=raw_transform) |
| 27 | + test_loader = get_tissuenet_loader(path=input_path, split="test", raw_channel="rgb", label_channel="cell", |
| 28 | + batch_size=1, patch_shape=(256, 256), num_workers=0, |
| 29 | + sampler=sampler, label_transform=label_transform, raw_transform=raw_transform) |
| 30 | + return val_loader, test_loader |
| 31 | + |
| 32 | + |
| 33 | +def extract_images(loader, out_folder): |
| 34 | + os.makedirs(out_folder, exist_ok=True) |
| 35 | + for i, (x, y) in tqdm(enumerate(loader), total=len(loader)): |
| 36 | + img_path = os.path.join(out_folder, "image_{:04d}.tif".format(i)) |
| 37 | + gt_path = os.path.join(out_folder, "label_{:04d}.tif".format(i)) |
| 38 | + |
| 39 | + img = x.squeeze().detach().cpu().numpy() |
| 40 | + gt = y.squeeze().detach().cpu().numpy() |
| 41 | + |
| 42 | + imageio.imwrite(img_path, img) |
| 43 | + imageio.imwrite(gt_path, gt) |
| 44 | + |
| 45 | + |
| 46 | +def main(): |
| 47 | + val_loader, test_loader = get_tissuenet_loaders("/scratch-grete/projects/nim00007/data/tissuenet") |
| 48 | + print("Length of val loader is:", len(val_loader)) |
| 49 | + print("Length of test loader is:", len(test_loader)) |
| 50 | + |
| 51 | + root_save_dir = "/scratch/projects/nim00007/sam/datasets/tissuenet" |
| 52 | + |
| 53 | + # we use the val set for test because there are some issues with the test set |
| 54 | + # out_folder = os.path.join(root_save_dir, "test") |
| 55 | + # extract_images(val_loader, out_folder) |
| 56 | + |
| 57 | + # we use the test folder for val and just use as many images as we can sample |
| 58 | + out_folder = os.path.join(root_save_dir, "val") |
| 59 | + extract_images(test_loader, out_folder) |
| 60 | + |
| 61 | + |
| 62 | +if __name__ == "__main__": |
| 63 | + main() |
0 commit comments