@@ -12,7 +12,8 @@ def _run_segmentation(
1212 foreground , boundaries , verbose , min_size ,
1313 # blocking shapes for parallel computation
1414 block_shape = (128 , 256 , 256 ),
15- halo = (48 , 48 , 48 )
15+ halo = (48 , 48 , 48 ),
16+ seed_distance = 6
1617):
1718 t0 = time .time ()
1819 boundary_threshold = 0.25
@@ -24,7 +25,6 @@ def _run_segmentation(
2425
2526 # Get the segmentation via seeded watershed.
2627 t0 = time .time ()
27- seed_distance = 6
2828 seeds = np .logical_and (foreground > 0.5 , dist > seed_distance )
2929 seeds = parallel .label (seeds , block_shape = block_shape , verbose = verbose )
3030 if verbose :
@@ -65,6 +65,7 @@ def segment_mitochondria(
6565 return_predictions : bool = False ,
6666 scale : Optional [List [float ]] = None ,
6767 mask : Optional [np .ndarray ] = None ,
68+ seed_distance : int = 6 ,
6869) -> Union [np .ndarray , Tuple [np .ndarray , np .ndarray ]]:
6970 """Segment mitochondria in an input volume.
7071
@@ -97,7 +98,7 @@ def segment_mitochondria(
9798
9899 # Run segmentation and rescale the result if necessary.
99100 foreground , boundaries = pred [:2 ]
100- seg = _run_segmentation (foreground , boundaries , verbose = verbose , min_size = min_size )
101+ seg = _run_segmentation (foreground , boundaries , verbose = verbose , min_size = min_size , seed_distance = seed_distance )
101102 seg = scaler .rescale_output (seg , is_segmentation = True )
102103
103104 if return_predictions :
0 commit comments