1+ import os
2+
3+ import imageio .v3 as imageio
14import napari
25import pandas as pd
36import numpy as np
@@ -128,6 +131,13 @@ def save_analysis(segmentations, vesicle_attributes, save_path):
128131 vesicle_attributes .to_excel (save_path , index = False )
129132
130133
134+ def save_segmentations (segmentations ):
135+ output_folder = "segmentations"
136+ os .makedirs (output_folder , exist_ok = True )
137+ for name , segmentation in segmentations .items ():
138+ imageio .imwrite (os .path .join (output_folder , f"{ name } .tif" ), segmentation , compression = "zlib" )
139+
140+
131141def main ():
132142 """This script implements an example analysis pipeline with SynapseNet and applies it to a tomogram.
133143 Here, we analyze docked and non-attached vesicles in a sample tomogram."""
@@ -150,7 +160,11 @@ def main():
150160 vesicle_attributes = assign_vesicle_pools (vesicle_attributes )
151161
152162 # Visualize the results.
153- visualize_results (tomogram , segmentations , vesicle_attributes )
163+ # visualize_results(tomogram, segmentations, vesicle_attributes)
164+
165+ # Save the segmentation results to tif files so that they can be re-used later.
166+ # They will be saved to the folder 'segmentations'.
167+ save_segmentations (segmentations )
154168
155169 # Compute the vesicle radii and combine and save all measurements.
156170 save_path = "analysis_results.xlsx"
0 commit comments