|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +import h5py |
| 4 | + |
| 5 | +from skimage.measure import regionprops |
| 6 | +from skimage.morphology import remove_small_holes |
| 7 | +from skimage.segmentation import relabel_sequential |
| 8 | + |
| 9 | +from synapse_net.inference.vesicles import segment_vesicles |
| 10 | +from synapse_net.inference.compartments import segment_compartments |
| 11 | +from synapse_net.inference.active_zone import segment_active_zone |
| 12 | +from synapse_net.inference.inference import get_model_path |
| 13 | + |
| 14 | + |
| 15 | +def fill_and_filter_vesicles(vesicles: np.ndarray) -> np.ndarray: |
| 16 | + """ |
| 17 | + Apply a size filter and fill small holes in vesicle segments. |
| 18 | +
|
| 19 | + Args: |
| 20 | + vesicles (np.ndarray): 3D volume with vesicle segment labels. |
| 21 | +
|
| 22 | + Returns: |
| 23 | + np.ndarray: Processed vesicle segmentation volume. |
| 24 | + """ |
| 25 | + ids, sizes = np.unique(vesicles, return_counts=True) |
| 26 | + ids, sizes = ids[1:], sizes[1:] # remove background |
| 27 | + |
| 28 | + min_size = 2500 |
| 29 | + vesicles_pp = vesicles.copy() |
| 30 | + filter_ids = ids[sizes < min_size] |
| 31 | + vesicles_pp[np.isin(vesicles, filter_ids)] = 0 |
| 32 | + |
| 33 | + props = regionprops(vesicles_pp) |
| 34 | + for prop in props: |
| 35 | + bb = prop.bbox |
| 36 | + bb = np.s_[ |
| 37 | + bb[0]:bb[3], bb[1]:bb[4], bb[2]:bb[5] |
| 38 | + ] |
| 39 | + mask = vesicles_pp[bb] == prop.label |
| 40 | + mask = remove_small_holes(mask, area_threshold=1000) |
| 41 | + vesicles_pp[bb][mask] = prop.label |
| 42 | + |
| 43 | + return vesicles_pp |
| 44 | + |
| 45 | + |
| 46 | +def SV_pred(raw: np.ndarray, SV_model: str, output_path: str = None, store: bool = False) -> np.ndarray: |
| 47 | + """ |
| 48 | + Run synaptic vesicle segmentation and optionally store the output. |
| 49 | +
|
| 50 | + Args: |
| 51 | + raw (np.ndarray): Raw EM image volume. |
| 52 | + SV_model (str): Path to vesicle model. |
| 53 | + output_path (str): HDF5 file to store predictions. |
| 54 | + store (bool): Whether to store predictions. |
| 55 | +
|
| 56 | + Returns: |
| 57 | + np.ndarray: Segmentation result. |
| 58 | + """ |
| 59 | + seg, pred = segment_vesicles(input_volume=raw, model_path=SV_model, verbose=False, return_predictions=True) |
| 60 | + |
| 61 | + if store and output_path: |
| 62 | + pred_key = f"predictions/SV/pred" |
| 63 | + seg_key = f"predictions/SV/seg" |
| 64 | + |
| 65 | + with h5py.File(output_path, "a") as f: |
| 66 | + if pred_key in f: |
| 67 | + print(f"{pred_key} already saved") |
| 68 | + else: |
| 69 | + f.create_dataset(pred_key, data=pred, compression="lzf") |
| 70 | + if seg_key in f: |
| 71 | + print(f"{seg_key} already saved") |
| 72 | + else: |
| 73 | + f.create_dataset(seg_key, data=seg, compression="lzf") |
| 74 | + elif store and not output_path: |
| 75 | + print("Output path is missing, not storing SV predictions") |
| 76 | + else: |
| 77 | + print("Not storing SV predictions") |
| 78 | + |
| 79 | + return seg |
| 80 | + |
| 81 | + |
| 82 | +def compartment_pred(raw: np.ndarray, compartment_model: str, output_path: str = None, store: bool = False) -> np.ndarray: |
| 83 | + """ |
| 84 | + Run compartment segmentation and optionally store the output. |
| 85 | +
|
| 86 | + Args: |
| 87 | + raw (np.ndarray): Raw EM image volume. |
| 88 | + compartment_model (str): Path to compartment model. |
| 89 | + output_path (str): HDF5 file to store predictions. |
| 90 | + store (bool): Whether to store predictions. |
| 91 | +
|
| 92 | + Returns: |
| 93 | + np.ndarray: Segmentation result. |
| 94 | + """ |
| 95 | + seg, pred = segment_compartments(input_volume=raw, model_path=compartment_model, verbose=False, return_predictions=True) |
| 96 | + |
| 97 | + if store and output_path: |
| 98 | + pred_key = f"predictions/compartment/pred" |
| 99 | + seg_key = f"predictions/compartment/seg" |
| 100 | + |
| 101 | + with h5py.File(output_path, "a") as f: |
| 102 | + if pred_key in f: |
| 103 | + print(f"{pred_key} already saved") |
| 104 | + else: |
| 105 | + f.create_dataset(pred_key, data=pred, compression="lzf") |
| 106 | + if seg_key in f: |
| 107 | + print(f"{seg_key} already saved") |
| 108 | + else: |
| 109 | + f.create_dataset(seg_key, data=seg, compression="lzf") |
| 110 | + elif store and not output_path: |
| 111 | + print("Output path is missing, not storing compartment predictions") |
| 112 | + else: |
| 113 | + print("Not storing compartment predictions") |
| 114 | + |
| 115 | + return seg |
| 116 | + |
| 117 | + |
| 118 | +def AZ_pred(raw: np.ndarray, AZ_model: str, output_path: str = None, store: bool = False) -> np.ndarray: |
| 119 | + """ |
| 120 | + Run active zone segmentation and optionally store the output. |
| 121 | +
|
| 122 | + Args: |
| 123 | + raw (np.ndarray): Raw EM image volume. |
| 124 | + AZ_model (str): Path to AZ model. |
| 125 | + output_path (str): HDF5 file to store predictions. |
| 126 | + store (bool): Whether to store predictions. |
| 127 | +
|
| 128 | + Returns: |
| 129 | + np.ndarray: Segmentation result. |
| 130 | + """ |
| 131 | + seg, pred = segment_active_zone(raw, model_path=AZ_model, verbose=False, return_predictions=True) |
| 132 | + |
| 133 | + if store and output_path: |
| 134 | + pred_key = f"predictions/az/pred" |
| 135 | + seg_key = f"predictions/az/seg" |
| 136 | + |
| 137 | + with h5py.File(output_path, "a") as f: |
| 138 | + if pred_key in f: |
| 139 | + print(f"{pred_key} already saved") |
| 140 | + else: |
| 141 | + f.create_dataset(pred_key, data=pred, compression="lzf") |
| 142 | + if seg_key in f: |
| 143 | + print(f"{seg_key} already saved") |
| 144 | + else: |
| 145 | + f.create_dataset(seg_key, data=seg, compression="lzf") |
| 146 | + elif store and not output_path: |
| 147 | + print("Output path is missing, not storing AZ predictions") |
| 148 | + else: |
| 149 | + print("Not storing AZ predictions") |
| 150 | + |
| 151 | + return seg |
| 152 | + |
| 153 | + |
| 154 | +def filter_presynaptic_SV(sv_seg: np.ndarray, compartment_seg: np.ndarray, output_path: str = None, |
| 155 | + store: bool = False, input_path: str = None) -> np.ndarray: |
| 156 | + """ |
| 157 | + Filters synaptic vesicle segmentation to retain only vesicles in the presynaptic region. |
| 158 | +
|
| 159 | + Args: |
| 160 | + sv_seg (np.ndarray): Vesicle segmentation. |
| 161 | + compartment_seg (np.ndarray): Compartment segmentation. |
| 162 | + output_path (str): Optional HDF5 file to store outputs. |
| 163 | + store (bool): Whether to store outputs. |
| 164 | + input_path (str): Path to input file (for filename-based filtering). |
| 165 | +
|
| 166 | + Returns: |
| 167 | + np.ndarray: Filtered presynaptic vesicle segmentation. |
| 168 | + """ |
| 169 | + # Fill out small holes in vesicles and then apply a size filter. |
| 170 | + vesicles_pp = fill_and_filter_vesicles(sv_seg) |
| 171 | + |
| 172 | + def n_vesicles(mask, ves): |
| 173 | + return len(np.unique(ves[mask])) - 1 |
| 174 | + |
| 175 | + # Find the segment with most vesicles. |
| 176 | + props = regionprops(compartment_seg, intensity_image=vesicles_pp, extra_properties=[n_vesicles]) |
| 177 | + compartment_ids = [prop.label for prop in props] |
| 178 | + vesicle_counts = [prop.n_vesicles for prop in props] |
| 179 | + if len(compartment_ids) == 0: |
| 180 | + mask = np.ones(compartment_seg.shape, dtype="bool") |
| 181 | + else: |
| 182 | + mask = (compartment_seg == compartment_ids[np.argmax(vesicle_counts)]).astype("uint8") |
| 183 | + |
| 184 | + # Filter all vesicles that are not in the mask. |
| 185 | + props = regionprops(vesicles_pp, mask) |
| 186 | + filter_ids = [prop.label for prop in props if prop.max_intensity == 0] |
| 187 | + |
| 188 | + name = os.path.basename(input_path) if input_path else "unknown" |
| 189 | + print(name) |
| 190 | + |
| 191 | + no_filter = ["C_M13DKO_080212_CTRL6.7B_crop.h5", "E_M13DKO_080212_DKO1.2_crop.h5", |
| 192 | + "G_M13DKO_080212_CTRL6.7B_crop.h5", "A_SNAP25_120812_CTRL2.3_14_crop.h5", |
| 193 | + "A_SNAP25_12082_KO2.1_6_crop.h5", "B_SNAP25_120812_CTRL2.3_14_crop.h5", |
| 194 | + "B_SNAP25_12082_CTRL2.3_5_crop.h5", "D_SNAP25_120812_CTRL2.3_14_crop.h5", |
| 195 | + "G_SNAP25_12.08.12_KO1.1_3_crop.h5"] |
| 196 | + # Don't filter for wrong masks (visual inspection) |
| 197 | + if name not in no_filter: |
| 198 | + vesicles_pp[np.isin(vesicles_pp, filter_ids)] = 0 |
| 199 | + |
| 200 | + if store and output_path: |
| 201 | + seg_presynapse = f"predictions/compartment/presynapse" |
| 202 | + seg_presynaptic_SV = f"predictions/SV/presynaptic" |
| 203 | + |
| 204 | + with h5py.File(output_path, "a") as f: |
| 205 | + if seg_presynapse in f: |
| 206 | + print(f"{seg_presynapse} already saved") |
| 207 | + else: |
| 208 | + f.create_dataset(seg_presynapse, data=mask, compression="lzf") |
| 209 | + if seg_presynaptic_SV in f: |
| 210 | + print(f"{seg_presynaptic_SV} already saved") |
| 211 | + else: |
| 212 | + f.create_dataset(seg_presynaptic_SV, data=vesicles_pp, compression="lzf") |
| 213 | + elif store and not output_path: |
| 214 | + print("Output path is missing, not storing presynapse seg and presynaptic SV seg") |
| 215 | + else: |
| 216 | + print("Not storing presynapse seg and presynaptic SV seg") |
| 217 | + |
| 218 | + #All non-zero labels are relabeled starting from 1.Labels are sequential (1, 2, 3, ..., n). |
| 219 | + #We do this to make the analysis part easier -> can match distances and diameters better |
| 220 | + vesicles_pp, _, _ = relabel_sequential(vesicles_pp) |
| 221 | + |
| 222 | + return vesicles_pp |
| 223 | + |
| 224 | + |
| 225 | +def run_predictions(input_path: str, output_path: str = None, store: bool = False): |
| 226 | + """ |
| 227 | + Run full inference pipeline: vesicles, compartments, active zone, and presynaptic SV filtering. |
| 228 | +
|
| 229 | + Args: |
| 230 | + input_path (str): Path to input HDF5 file with 'raw' dataset. |
| 231 | + output_path (str): Path to output HDF5 file to store predictions. |
| 232 | + store (bool): Whether to store intermediate and final results. |
| 233 | +
|
| 234 | + Returns: |
| 235 | + Tuple[np.ndarray, np.ndarray]: (Filtered vesicle segmentation, AZ segmentation) |
| 236 | + """ |
| 237 | + with h5py.File(input_path, "r") as f: |
| 238 | + raw = f["raw"][:] |
| 239 | + |
| 240 | + SV_model = get_model_path("vesicles_3d") |
| 241 | + compartment_model = get_model_path("compartments") |
| 242 | + # TODO upload better AZ model |
| 243 | + AZ_model = "/mnt/lustre-emmy-hdd/usr/u12095/synapse_net/models/ConstantinAZ/checkpoints/v7/" |
| 244 | + |
| 245 | + print("Running SV prediction") |
| 246 | + sv_seg = SV_pred(raw, SV_model, output_path, store) |
| 247 | + |
| 248 | + print("Running compartment prediction") |
| 249 | + comp_seg = compartment_pred(raw, compartment_model, output_path, store) |
| 250 | + |
| 251 | + print("Running AZ prediction") |
| 252 | + az_seg = AZ_pred(raw, AZ_model, output_path, store) |
| 253 | + |
| 254 | + print("Filtering the presynaptic SV") |
| 255 | + presyn_SV_seg = filter_presynaptic_SV(sv_seg, comp_seg, output_path, store, input_path) |
| 256 | + |
| 257 | + print("Done with predictions") |
| 258 | + |
| 259 | + return presyn_SV_seg, az_seg |
0 commit comments