|
| 1 | +import os |
| 2 | +from datetime import datetime |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import pandas as pd |
| 6 | +from common import get_all_tomograms, get_seg_path, to_condition |
| 7 | + |
| 8 | +from synapse_net.distance_measurements import load_distances |
| 9 | + |
| 10 | + |
| 11 | +def get_output_folder(): |
| 12 | + output_root = "./results" |
| 13 | + date = datetime.now().strftime("%Y%m%d") |
| 14 | + |
| 15 | + version = 1 |
| 16 | + output_folder = os.path.join(output_root, f"{date}_{version}") |
| 17 | + while os.path.exists(output_folder): |
| 18 | + version += 1 |
| 19 | + output_folder = os.path.join(output_root, f"{date}_{version}") |
| 20 | + |
| 21 | + os.makedirs(output_folder) |
| 22 | + return output_folder |
| 23 | + |
| 24 | + |
| 25 | +def _export_results(tomograms, result_path, result_extraction): |
| 26 | + results = {} |
| 27 | + for tomo in tomograms: |
| 28 | + condition = to_condition(tomo) |
| 29 | + res = result_extraction(tomo) |
| 30 | + if condition in results: |
| 31 | + results[condition].append(res) |
| 32 | + else: |
| 33 | + results[condition] = [res] |
| 34 | + |
| 35 | + for condition, res in results.items(): |
| 36 | + res = pd.concat(res) |
| 37 | + if os.path.exists(result_path): |
| 38 | + with pd.ExcelWriter(result_path, engine="openpyxl", mode="a") as writer: |
| 39 | + res.to_excel(writer, sheet_name=condition, index=False) |
| 40 | + else: |
| 41 | + res.to_excel(result_path, sheet_name=condition, index=False) |
| 42 | + |
| 43 | + |
| 44 | +def export_vesicle_pools(tomograms, result_path): |
| 45 | + |
| 46 | + def result_extraction(tomo): |
| 47 | + folder = os.path.split(get_seg_path(tomo))[0] |
| 48 | + measure_path = os.path.join(folder, "vesicle_pools.csv") |
| 49 | + measures = pd.read_csv(measure_path).dropna() |
| 50 | + pool_names, counts = np.unique(measures.pool.values, return_counts=True) |
| 51 | + res = {"tomogram": [os.path.basename(tomo)]} |
| 52 | + res.update({k: v for k, v in zip(pool_names, counts)}) |
| 53 | + res = pd.DataFrame(res) |
| 54 | + return res |
| 55 | + |
| 56 | + _export_results(tomograms, result_path, result_extraction) |
| 57 | + |
| 58 | + |
| 59 | +def export_distances(tomograms, result_path): |
| 60 | + def result_extraction(tomo): |
| 61 | + folder = os.path.split(get_seg_path(tomo))[0] |
| 62 | + measure_path = os.path.join(folder, "vesicle_pools.csv") |
| 63 | + measures = pd.read_csv(measure_path).dropna() |
| 64 | + |
| 65 | + measures = measures[measures.pool.isin(["MP-V", "Docked-V"])][["vesicle_id", "pool"]] |
| 66 | + |
| 67 | + # Load the distances to PD. |
| 68 | + pd_distances, _, _, seg_ids = load_distances(os.path.join(folder, "distances", "PD.npz")) |
| 69 | + pd_distances = {sid: dist for sid, dist in zip(seg_ids, pd_distances)} |
| 70 | + measures["distance-to-pd"] = [pd_distances[vid] for vid in measures.vesicle_id.values] |
| 71 | + |
| 72 | + # Load the distances to membrane. |
| 73 | + mem_distances, _, _, seg_ids = load_distances(os.path.join(folder, "distances", "membrane.npz")) |
| 74 | + mem_distances = {sid: dist for sid, dist in zip(seg_ids, mem_distances)} |
| 75 | + measures["distance-to-membrane"] = [mem_distances[vid] for vid in measures.vesicle_id.values] |
| 76 | + |
| 77 | + measures = measures.drop(columns=["vesicle_id"]) |
| 78 | + measures.insert(0, "tomogram", len(measures) * [os.path.basename(tomo)]) |
| 79 | + |
| 80 | + return measures |
| 81 | + |
| 82 | + _export_results(tomograms, result_path, result_extraction) |
| 83 | + |
| 84 | + |
| 85 | +def export_diameter(tomograms, result_path): |
| 86 | + def result_extraction(tomo): |
| 87 | + folder = os.path.split(get_seg_path(tomo))[0] |
| 88 | + measure_path = os.path.join(folder, "vesicle_pools.csv") |
| 89 | + measures = pd.read_csv(measure_path).dropna() |
| 90 | + |
| 91 | + measures = measures[measures.pool.isin(["MP-V", "Docked-V"])][["pool", "diameter"]] |
| 92 | + measures.insert(0, "tomogram", len(measures) * [os.path.basename(tomo)]) |
| 93 | + |
| 94 | + return measures |
| 95 | + |
| 96 | + _export_results(tomograms, result_path, result_extraction) |
| 97 | + |
| 98 | + |
| 99 | +def main(): |
| 100 | + tomograms = get_all_tomograms() |
| 101 | + result_folder = get_output_folder() |
| 102 | + |
| 103 | + result_path = os.path.join(result_folder, "vesicle_pools.xlsx") |
| 104 | + export_vesicle_pools(tomograms, result_path) |
| 105 | + |
| 106 | + result_path = os.path.join(result_folder, "distances.xlsx") |
| 107 | + export_distances(tomograms, result_path) |
| 108 | + |
| 109 | + result_path = os.path.join(result_folder, "diameter.xlsx") |
| 110 | + export_diameter(tomograms, result_path) |
| 111 | + |
| 112 | + |
| 113 | +if __name__ == "__main__": |
| 114 | + main() |
0 commit comments