|
24 | 24 |
|
25 | 25 |
|
26 | 26 | def mz_range_from_header(h):
|
27 |
| - """ |
28 |
| - Extract a list of headers / . |
29 |
| - :rtype: list |
30 |
| - """ |
31 | 27 | return [float(m) for m in re.findall(r'([\w\.-]+)-([\w\.-]+)', h)[0]]
|
32 | 28 |
|
33 | 29 |
|
34 | 30 | class ThermoRaw:
|
35 |
| - """ |
36 |
| - Extract a list of headers / . |
37 |
| - :rtype: list |
38 |
| - """ |
| 31 | + |
39 | 32 | def __init__(self, filename):
|
40 | 33 | self.run = RawFileReader.RawFileReaderAdapter.FileFactory(filename)
|
41 | 34 | self.run.SelectInstrument(Business.Device.MS, 1)
|
| 35 | + self.filename = filename |
42 | 36 |
|
43 | 37 | def headers(self):
|
44 |
| - """ |
45 |
| - Extract a particular scan from a *.raw file and return a PeakList objects |
46 |
| - :rtype: dict |
47 |
| - """ |
| 38 | + |
48 | 39 | sids = collections.OrderedDict()
|
49 | 40 | for scan_id in range(self.run.RunHeaderEx.FirstSpectrum, self.run.RunHeaderEx.LastSpectrum + 1):
|
50 | 41 | sids.setdefault(str(self.run.GetFilterForScanNumber(scan_id).Filter), []).append(scan_id)
|
51 | 42 | return sids
|
52 | 43 |
|
53 | 44 | def scan_ids(self):
|
54 |
| - """ |
55 |
| - Extract a particular scan from a *.raw file and return a PeakList objects |
56 |
| - :rtype: dict |
57 |
| - """ |
| 45 | + |
58 | 46 | sids = collections.OrderedDict()
|
59 | 47 | for scan_id in range(self.run.RunHeaderEx.FirstSpectrum, self.run.RunHeaderEx.LastSpectrum + 1):
|
60 | 48 | sids[scan_id] = str(self.run.GetFilterForScanNumber(scan_id).Filter)
|
61 | 49 | return sids
|
62 | 50 |
|
63 | 51 | def peaklist(self, scan_id, function_noise="noise_packets"):
|
64 |
| - """ |
65 |
| - Extract a particular scan from a *.raw file and return a PeakList objects |
66 | 52 |
|
67 |
| - :param scan_ids: |
68 |
| - :rtype: list |
69 |
| - """ |
70 | 53 | if function_noise not in ["noise_packets", "mean", "median", "mad"]:
|
71 | 54 | raise ValueError("select a function that is available [noise_packets, mean, median, mad]")
|
72 | 55 |
|
73 | 56 | scan = self.run.GetCentroidStream(scan_id, False)
|
74 |
| - |
75 |
| - mz_ibn = zip(scan.Masses, scan.Intensities, scan.Baselines, scan.Noises) # SignalToNoise not available |
76 |
| - mz_ibn.sort() |
77 |
| - mzs, ints, baseline, noise = zip(*mz_ibn) |
| 57 | + if scan.Masses is not None: |
| 58 | + mz_ibn = zip(scan.Masses, scan.Intensities, scan.Baselines, scan.Noises) # SignalToNoise not available |
| 59 | + mz_ibn.sort() |
| 60 | + mzs, ints, baseline, noise = zip(*mz_ibn) |
| 61 | + else: |
| 62 | + mzs, ints, baseline, noise = [], [], [], [] |
78 | 63 |
|
79 | 64 | if function_noise == "noise_packets":
|
80 | 65 | snr = [p.SignalToNoise for p in scan.GetCentroids()]
|
81 |
| - elif function_noise == "median": |
| 66 | + elif function_noise == "median" and len(ints) > 0: |
82 | 67 | snr = ints / np.median(ints)
|
83 |
| - elif function_noise == "mean": |
| 68 | + elif function_noise == "mean" and len(ints) > 0: |
84 | 69 | snr = ints / np.mean(ints)
|
85 |
| - elif function_noise == "mad": |
| 70 | + elif function_noise == "mad" and len(ints) > 0: |
86 | 71 | snr = ints / np.median(np.abs(np.subtract(ints, np.median(ints))))
|
| 72 | + else: |
| 73 | + snr = [] |
87 | 74 |
|
88 | 75 | scan_stats = self.run.GetScanStatsForScanNumber(scan_id)
|
89 | 76 |
|
@@ -119,39 +106,43 @@ def peaklist(self, scan_id, function_noise="noise_packets"):
|
119 | 106 | tic=tic,
|
120 | 107 | function_noise=function_noise)
|
121 | 108 |
|
122 |
| - pl.add_attribute('snr', snr) |
123 |
| - pl.add_attribute('noise', noise) |
124 |
| - pl.add_attribute('baseline', baseline) |
| 109 | + if len(pl.mz) > 0: |
| 110 | + pl.add_attribute('snr', snr) |
| 111 | + pl.add_attribute('noise', noise) |
| 112 | + pl.add_attribute('baseline', baseline) |
| 113 | + |
125 | 114 | return pl
|
126 | 115 |
|
127 | 116 | def peaklists(self, scan_ids, function_noise="noise_packets"):
|
128 |
| - """ |
129 |
| - Extract the scans from a *.raw file and return a list of PeakList objects |
130 |
| -
|
131 |
| - :param scan_ids: |
132 |
| - :rtype: list |
133 |
| -
|
134 |
| - """ |
135 | 117 | if function_noise not in ["noise_packets", "mean", "median", "mad"]:
|
136 | 118 | raise ValueError("select a function that is available [noise_packets, mean, median, mad]")
|
137 | 119 |
|
138 | 120 | return [self.peaklist(scan_id, function_noise=function_noise) for scan_id in scan_ids]
|
139 | 121 |
|
140 | 122 | def tics(self):
|
141 |
| - # somehow i can not access the scans directly when run() uses an open archive object |
142 |
| - # print self.run()[2] |
143 |
| - tics = [] |
| 123 | + tics = collections.OrderedDict() |
144 | 124 | for scan_id in range(self.run.RunHeaderEx.FirstSpectrum, self.run.RunHeaderEx.LastSpectrum + 1):
|
145 | 125 | scan_stats = self.run.GetScanStatsForScanNumber(scan_id)
|
146 |
| - tics.append(scan_stats.TIC) |
| 126 | + tics[scan_id].append(scan_stats.TIC) |
147 | 127 | return tics
|
148 | 128 |
|
| 129 | + def injection_times(self): |
| 130 | + injection_times = collections.OrderedDict() |
| 131 | + for scan_id in range(self.run.RunHeaderEx.FirstSpectrum, self.run.RunHeaderEx.LastSpectrum + 1): |
| 132 | + extra_values = list(self.run.GetTrailerExtraInformation(scan_id).Values) |
| 133 | + extra_labels = list(self.run.GetTrailerExtraInformation(scan_id).Labels) |
| 134 | + for i, label in enumerate(extra_labels): |
| 135 | + if "Ion Injection Time (ms):" == label: |
| 136 | + injection_times[scan_id] = float(extra_values[i]) |
| 137 | + if scan_id not in injection_times: |
| 138 | + injection_times[scan_id] = None |
| 139 | + return injection_times |
| 140 | + |
149 | 141 | def scan_dependents(self):
|
150 | 142 | l = []
|
151 | 143 | for scan_id in range(self.run.RunHeaderEx.FirstSpectrum, self.run.RunHeaderEx.LastSpectrum + 1):
|
152 | 144 | gsd = self.run.GetScanDependents(scan_id, 5)
|
153 | 145 | if gsd is not None:
|
154 | 146 | for i, d in enumerate(gsd.ScanDependentDetailArray):
|
155 |
| - print scan_id, self.run.GetFilterForScanNumber(scan_id).Filter, d.ScanIndex, d.FilterString |
156 | 147 | l.append([scan_id, d.ScanIndex])
|
157 | 148 | return l
|
0 commit comments