|
| 1 | +# fold_change |
| 2 | +test_that('fold_change',{ |
| 3 | + set.seed('57475') |
| 4 | + |
| 5 | + # data |
| 6 | + D = iris_DatasetExperiment() |
| 7 | + |
| 8 | + # two groups |
| 9 | + F = filter_smeta(mode='exclude',levels='setosa',factor_name='Species') |
| 10 | + F = model_apply(F,D) |
| 11 | + |
| 12 | + D = predicted(F) |
| 13 | + |
| 14 | + # add column for paired data |
| 15 | + D$sample_meta$sample_id=c(1:50,1:50) |
| 16 | + D$data[1:50,2] = NA |
| 17 | + D$data[1:25,3] = NA |
| 18 | + |
| 19 | + # unpaired |
| 20 | + FF = fold_change(factor_name='Species',method="geometric") |
| 21 | + FF = model_apply(FF,D) |
| 22 | + m=exp(mean(log(D$data[D$sample_meta$Species=='virginica',1]))) / exp(mean(log((D$data[D$sample_meta$Species=='versicolor',1])))) |
| 23 | + expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) |
| 24 | + expect_true(is.na(FF$fold_change[2,1])) |
| 25 | + m=exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='virginica',3])))) / exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='versicolor',3])))) |
| 26 | + expect_equal(FF$fold_change[3,1],m,tolerance=0.00001) |
| 27 | + |
| 28 | + FF$method = 'median' |
| 29 | + FF = model_apply(FF,D) |
| 30 | + m = median(D$data[D$sample_meta$Species=='virginica',1]) / median(D$data[D$sample_meta$Species=='versicolor',1]) |
| 31 | + expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) |
| 32 | + expect_true(is.na(FF$fold_change[2,1])) |
| 33 | + m = median(D$data[D$sample_meta$Species=='virginica',3],na.rm = TRUE) / median(D$data[D$sample_meta$Species=='versicolor',3],na.rm = TRUE) |
| 34 | + expect_equal(FF$fold_change[3,1],m,tolerance=0.00001) |
| 35 | + |
| 36 | + FF$method = 'mean' |
| 37 | + FF = model_apply(FF,D) |
| 38 | + m = mean(D$data[D$sample_meta$Species=='virginica',1]) / mean(D$data[D$sample_meta$Species=='versicolor',1]) |
| 39 | + expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) |
| 40 | + expect_true(is.na(FF$fold_change[2,1])) |
| 41 | + m = mean(D$data[D$sample_meta$Species=='virginica',3],na.rm=TRUE) / mean(D$data[D$sample_meta$Species=='versicolor',3],na.rm=TRUE) |
| 42 | + expect_equal(FF$fold_change[3,1],m,tolerance=0.00001) |
| 43 | + |
| 44 | + # paired |
| 45 | + FF = fold_change(factor_name='Species',method="geometric",paired=TRUE,sample_name = 'sample_id') |
| 46 | + FF = model_apply(FF,D) |
| 47 | + m=exp(mean(log(D$data[D$sample_meta$Species=='virginica',1])-log(D$data[D$sample_meta$Species=='versicolor',1]))) |
| 48 | + expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) |
| 49 | + expect_true(is.na(FF$fold_change[2,1])) |
| 50 | + |
| 51 | + FF$method = 'median' |
| 52 | + FF = model_apply(FF,D) |
| 53 | + m = median(D$data[D$sample_meta$Species=='virginica',1] / D$data[D$sample_meta$Species=='versicolor',1]) |
| 54 | + expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) |
| 55 | + expect_true(is.na(FF$fold_change[2,1])) |
| 56 | + |
| 57 | + FF$method = 'mean' |
| 58 | + FF = model_apply(FF,D) |
| 59 | + m = mean(D$data[D$sample_meta$Species=='virginica',1] / D$data[D$sample_meta$Species=='versicolor',1]) |
| 60 | + expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) |
| 61 | + expect_true(is.na(FF$fold_change[2,1])) |
| 62 | + |
| 63 | + |
| 64 | +}) |
0 commit comments