You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+12-10Lines changed: 12 additions & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -82,26 +82,28 @@ Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T.
82
82
83
83
The following publications, in reverse chronological order, have used Fidimag:
84
84
85
-
[1][Binding a hopfion in a chiral magnet nanodisk](https://journals.aps.org/prb/pdf/10.1103/PhysRevB.98.174437), Y. Liu, R. K. Lake, and J. Zang, Physical Review B 98, 174437 (2018)
85
+
[1][Learning Magnetization Dynamics](https://arxiv.org/abs/1903.09499), A. Kovacs, J. Fischbacher, H. Oezelt, M. Gusenbauer, L. Exl, F. Bruckner, D.Suess, T.Schrefl, arXiV (2019)
86
86
87
-
[2][Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), D. C-Ortuño, M. Beg2, V. Nehruji3, L. Breth1, R. Pepper, T. Kluyver, G. Downing, T. Hesjedal, P. Hatton3, T. Lancaster, R. Hertel5, O. Hovorka and H. Fangohr, New Journal of Physics, Volume 20 (2018)
87
+
[2][Binding a hopfion in a chiral magnet nanodisk](https://journals.aps.org/prb/pdf/10.1103/PhysRevB.98.174437), Y. Liu, R. K. Lake, and J. Zang, Physical Review B 98, 174437 (2018)
88
88
89
-
[3][Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) K.Pan, L.Xing, H.Y.Yuan, and W.Wang,
89
+
[3][Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), D. C-Ortuño, M. Beg2, V. Nehruji3, L. Breth1, R. Pepper, T. Kluyver, G. Downing, T. Hesjedal, P. Hatton3, T. Lancaster, R. Hertel5, O. Hovorka and H. Fangohr, New Journal of Physics, Volume 20 (2018)
90
+
91
+
[4][Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) K.Pan, L.Xing, H.Y.Yuan, and W.Wang,
90
92
Physical Review B 97, 184418 (2018).
91
93
92
-
[4][Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., Journal of Open Research Software, 6(1), p.22. (2018)
94
+
[5][Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., Journal of Open Research Software, 6(1), p.22. (2018)
93
95
94
-
[5][Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, M-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka & H. Fangohr, Scientific Reports 7, 4060 (2017)
96
+
[6][Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, M-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka & H. Fangohr, Scientific Reports 7, 4060 (2017)
95
97
96
-
[6][Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), W. Wang, Z. Zhang, R.A. Pepper, C. Mu, Y. Zhou & Hans Fangohr, Journal of Physics: Condensed Matter, 30, 1 (2017)
98
+
[7][Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), W. Wang, Z. Zhang, R.A. Pepper, C. Mu, Y. Zhou & Hans Fangohr, Journal of Physics: Condensed Matter, 30, 1 (2017)
97
99
98
-
[7][Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), W. Wang, C. Gu, Y. Zhou & H. Fangohr, Phys. Rev. B 96 024430 (2017)
100
+
[8][Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), W. Wang, C. Gu, Y. Zhou & H. Fangohr, Phys. Rev. B 96 024430 (2017)
99
101
100
-
[8][Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, Phys. Rev. B 92, 020403 (2015).
102
+
[9][Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, Phys. Rev. B 92, 020403 (2015).
101
103
102
-
[9][Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) B. Zhang, W. Wang, M. Beg, H. Fangohr, and W. Kuch, Applied Physics Letters 106, 102401 (2015).
104
+
[10][Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) B. Zhang, W. Wang, M. Beg, H. Fangohr, and W. Kuch, Applied Physics Letters 106, 102401 (2015).
103
105
104
-
[10][Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) W. Wang, M. Albert, M. Beg, M-A. Bisotti, D. Chernyshenko, D. Cortés-Ortuño, I. Hawke & H. Fangohr, Phys. Rev. Lett. 114, 087203 (2015)
106
+
[11][Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) W. Wang, M. Albert, M. Beg, M-A. Bisotti, D. Chernyshenko, D. Cortés-Ortuño, I. Hawke & H. Fangohr, Phys. Rev. Lett. 114, 087203 (2015)
105
107
106
108
### Acknowledgements
107
109
We acknowledge financial support from EPSRC’s Centre for Doctoral Training in Next Generation Computational Modelling (EP/L015382/1), EPSRC’s Doctoral Training Centre in Complex System Simulation (EP/G03690X/1), EPSRC Programme grant on Skyrmionics (EP/N032128/1) and OpenDreamKitHorizon 2020 European Research Infrastructure project (676541).
0 commit comments