You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+18-7Lines changed: 18 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -70,25 +70,36 @@ The results can be straightforwardly visualised from the outputted VTK files usi
70
70
71
71
72
72
73
-
### Attributions
73
+
### Attributions
74
74
The code is developed by Weiwei Wang, Marc-Antonio Bisotti, David Cortes, Thomas Kluyver, Mark Vousden, Ryan Pepper, Oliver Laslett, Rebecca Carey, and Hans Fangohr at the University of Southampton.
75
75
76
76
This is an early experimental version; contributions and pull requests to both the code and documentation are welcome.
77
77
If you use Fidimag, please cite as:
78
78
79
-
David Cortés-Ortuño, Weiwei Wang, Ryan Pepper, Marc-Antonio Bisotti, Thomas Kluyver, Mark Vousden, & Hans Fangohr. (2016). Fidimag v2.0 [Data set]. Zenodo. http://doi.org/10.5281/zenodo.167858A bib file is provided in the repository.
79
+
Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., 2018. Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package. Journal of Open Research Software, 6(1), p.22. DOI: http://doi.org/10.5334/jors.223
80
80
81
81
### Publications
82
82
83
83
The following publications, in reverse chronological order, have used Fidimag:
84
84
85
-
[1][Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, M-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka & H. Fangohr, Scientific Reports 7, 4060 (2017)
85
+
[1][Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), D. C-Ortuño, M. Beg2, V. Nehruji3, L. Breth1, R. Pepper, T. Kluyver, G. Downing, T. Hesjedal, P. Hatton3, T. Lancaster, R. Hertel5, O. Hovorka and H. Fangohr, New Journal of Physics, Volume 20 (2018)
86
86
87
-
[2][Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), W. Wang, Z. Zhang, R.A. Pepper, C. Mu, Y. Zhou & Hans Fangohr, Journal of Physics: Condensed Matter, 30, 1 (2017)
87
+
[2][Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) K.Pan, L.Xing, H.Y.Yuan, and W.Wang,
88
+
Physical Review B 97, 184418 (2018).
88
89
89
-
[3][Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), W. Wang, C. Gu, Y. Zhou & H. Fangohr, Phys. Rev. B 96 (2017)
90
+
[3][Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., Journal of Open Research Software, 6(1), p.22. (2018)
90
91
91
-
[4][Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) W. Wang, M. Albert, M. Beg, M-A. Bisotti, D. Chernyshenko, D. Cortés-Ortuño, I. Hawke & H. Fangohr, Phys. Rev. Lett. 114, 087203 (2015)
92
+
[4][Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, M-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka & H. Fangohr, Scientific Reports 7, 4060 (2017)
93
+
94
+
[5][Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), W. Wang, Z. Zhang, R.A. Pepper, C. Mu, Y. Zhou & Hans Fangohr, Journal of Physics: Condensed Matter, 30, 1 (2017)
95
+
96
+
[6][Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), W. Wang, C. Gu, Y. Zhou & H. Fangohr, Phys. Rev. B 96 024430 (2017)
97
+
98
+
[7][Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, Phys. Rev. B 92, 020403 (2015).
99
+
100
+
[8][Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) B. Zhang, W. Wang, M. Beg, H. Fangohr, and W. Kuch, Applied Physics Letters 106, 102401 (2015).
101
+
102
+
[9][Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) W. Wang, M. Albert, M. Beg, M-A. Bisotti, D. Chernyshenko, D. Cortés-Ortuño, I. Hawke & H. Fangohr, Phys. Rev. Lett. 114, 087203 (2015)
92
103
93
104
### Acknowledgements
94
-
We acknowledge financial support from EPSRC’s Centre for Doctoral Training in Next Generation Computational Modelling (EP/L015382/1) and EPSRC’s Doctoral Training Centre in Complex System Simulation (EP/G03690X/1)
105
+
We acknowledge financial support from EPSRC’s Centre for Doctoral Training in Next Generation Computational Modelling (EP/L015382/1), EPSRC’s Doctoral Training Centre in Complex System Simulation (EP/G03690X/1), EPSRC Programme grant on Skyrmionics (EP/N032128/1) and OpenDreamKitHorizon 2020 European Research Infrastructure project (676541).
0 commit comments