|
| 1 | +Version 3.0 Alpha |
| 2 | +------------------ |
| 3 | +* Changes to the helper functions init_scalar and init_vector (fidimag/common/helper.py) |
| 4 | + which allow users to pass additional parameters. These are then used within the sim |
| 5 | + classes to allow |
| 6 | + |
| 7 | + For example: |
| 8 | + |
| 9 | + ``` |
| 10 | + |
| 11 | + mesh = CuboidMesh(nx=10, ny=1, nz=1, unit_length=1e-9) |
| 12 | + sim = Sim(mesh, Ms) |
| 13 | +
|
| 14 | + def init_domain_wall(pos, domain_centre) |
| 15 | + x, y, z = pos |
| 16 | +
|
| 17 | + if x < domain_centre: |
| 18 | + return (0, 0, 1) |
| 19 | +
|
| 20 | + else: |
| 21 | + return (0, 0, -1) |
| 22 | + |
| 23 | + # Place a domain wall at 5nm |
| 24 | + sim.set_m(init_domain_wall, 5) |
| 25 | + # Place a domain wall at 3nm |
| 26 | + sim.set_m(init_domain_wall, 3) |
| 27 | +
|
| 28 | + ``` |
| 29 | + |
| 30 | +* Setting currents is now more general, and is standardised across the simulation types. |
| 31 | + This allows us to use more general functions for setting the current. |
| 32 | + Previously, the current function was set as: |
| 33 | + ``` |
| 34 | + sim(mesh, driver='llg_stt') |
| 35 | + sim.driver.jx = 1e14 # A / m^2 |
| 36 | + sim.driver.update_j_fun = lambda t: np.sin(t) |
| 37 | + ``` |
| 38 | + with the actual current used being multiplicative: |
| 39 | + |
| 40 | + $ jx * sin(t) $ |
| 41 | + |
| 42 | + For the current-perpendicular to the plane STT ('llg_stt_cpp') driver |
| 43 | + we would now change this to |
| 44 | + |
| 45 | + ``` |
| 46 | + sim.driver(mesh, driver='llg_stt_cpp') |
| 47 | + sim.driver.j_function = lambda t: 1e14 * np.sin(t) |
| 48 | + ``` |
| 49 | + and for the standard STT driver: |
| 50 | + |
| 51 | + ``` |
| 52 | + sim.drive(mesh, driver='llg_stt') |
| 53 | + sim.driver.jz_function = lambda t: 1e14 * np.sin(t) |
| 54 | + # Can also set: |
| 55 | + # sim.driver.jx_function = ... |
| 56 | + # sim.driver.jy_function = ... |
| 57 | +
|
| 58 | +* Similarly, the TimeZeeman interaction is also no longer multiplicative; |
| 59 | + you can have an arbitrary function of the form: |
| 60 | + |
| 61 | + def time_function(pos, t): |
| 62 | + x, y, z = pos |
| 63 | + # some calculation of Bx(pos, t), By(pos, t), Bz(pos, t) |
| 64 | + return (Bx, By, Bz) |
| 65 | + zee = TimeZeeman(np.array([0, 0, 0]), time_function) |
| 66 | + sim.add(zee) |
| 67 | +
|
| 68 | +* You can now remove energy classes from the simulation. |
| 69 | +
|
| 70 | + This can be useful in cases where you have an interaction |
| 71 | + but no longer need to calculate it because the simulation has |
| 72 | + reached a certain point, e.g. an applied field has been turned off. |
| 73 | + |
| 74 | + In the data table, the entries corresponding to a given interaction |
| 75 | + will be zero everywhere once the interaction is removed. |
| 76 | + |
| 77 | + |
| 78 | + For example: |
| 79 | +
|
| 80 | + ``` |
| 81 | + sim.add(Zeeman((0, 0, B), name='Zeeman')) |
| 82 | + |
| 83 | + sim.run_until(1e-9) |
| 84 | + sim.remove('Zeeman') |
| 85 | + ``` |
0 commit comments