You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* fix: links
* Address PR review feedback from Patrick
- Simplify section headers (remove redundant 'How to')
- Add version check command after Ollama installation
- Expand model recommendations with specific models and memory requirements
- Add concrete examples for advanced settings with YAML configuration
- Include diagnostic commands (ollama ps, ollama logs) for troubleshooting
- Fix Python code formatting in FastAPI example
- Update version references to current versions (Ollama v0.5.x, Continue v0.9.x)
* Add link to recommended models documentation
Link 'Choose models based on your specific needs' section to the official recommended models documentation for additional model options and guidance.
* Fix link to use local path instead of full URL
Convert external URL to local documentation link for recommended models section.
* Update version references to current versions
Update Ollama version to v0.11.x and Continue version to v1.1.x to reflect current software versions.
* fix: title
* docs: fix formatting and add rerank/autocomplete roles to Ollama guide
- Fix code block formatting in hub blocks warning section
- Add rerank and autocomplete roles to autodetect configuration
- Clarify that some roles may need manual configuration with autodetect
* fix: mintlify cloud checks links now
@@ -14,7 +14,7 @@ Before getting started, ensure your system meets these requirements:
14
14
15
15
## How to Install Ollama - Step-by-Step
16
16
17
-
### Step 1: How to Install Ollama
17
+
### Step 1: Install Ollama
18
18
19
19
Choose the installation method for your operating system:
20
20
@@ -29,7 +29,7 @@ curl -fsSL https://ollama.ai/install.sh | sh
29
29
# Download from ollama.ai
30
30
```
31
31
32
-
### Step 2: How to Start Ollama
32
+
### Step 2: Start Ollama Service
33
33
34
34
After installation, start the Ollama service:
35
35
@@ -40,12 +40,17 @@ ollama serve
40
40
# Verify it's running
41
41
curl http://localhost:11434
42
42
# Should return "Ollama is running"
43
+
44
+
# Check Ollama version
45
+
ollama --version
43
46
```
44
47
45
-
### Step 3: How to Download Models
48
+
### Step 3: Download Models
46
49
47
50
<Warning>
48
-
**Important**: Always use `ollama pull` instead of `ollama run` to download models. The `run` command starts an interactive session which isn't needed for Continue.
51
+
**Important**: Always use `ollama pull` instead of `ollama run` to download
52
+
models. The `run` command starts an interactive session which isn't needed for
53
+
Continue.
49
54
</Warning>
50
55
51
56
Download models using the exact tag specified:
@@ -62,12 +67,15 @@ ollama list
62
67
```
63
68
64
69
**Common Model Tags:**
70
+
65
71
-`:latest` - Default version (used if no tag specified)
If a model page shows `deepseek-r1:32b` on Ollama's website, you must pull it with that exact tag. Using just `deepseek-r1` will pull `:latest` which may be a different size.
76
+
If a model page shows `deepseek-r1:32b` on Ollama's website, you must pull it
77
+
with that exact tag. Using just `deepseek-r1` will pull `:latest` which may be
78
+
a different size.
71
79
</Note>
72
80
73
81
## How to Configure Ollama with Continue
@@ -76,10 +84,9 @@ There are multiple ways to configure Ollama models in Continue:
76
84
77
85
### Method 1: Using Hub Model Blocks in Local config.yaml
78
86
79
-
The easiest way is to use pre-configured model blocks from the Continue Hub in your local configuration:
87
+
The easiest way is to use [pre-configured model blocks](/reference#local-blocks) from the Continue Hub in your local configuration:
80
88
81
-
```yaml
82
-
# ~/.continue/assistants/My Local Assistant.yaml
89
+
```yaml title="~/.continue/assistants/My Local Assistant.yaml"
83
90
name: My Local Assistant
84
91
version: 0.0.1
85
92
schema: v1
@@ -90,20 +97,20 @@ models:
90
97
```
91
98
92
99
<Warning>
93
-
**Important**: Hub blocks only provide configuration - you still need to pull the model locally. The hub block `ollama/deepseek-r1-32b` configures Continue to use `model: deepseek-r1:32b`, but the actual model must be installed:
94
-
```bash
95
-
# Check what the hub block expects (view on hub.continue.dev)
96
-
# Then pull that exact model tag locally
97
-
ollama pull deepseek-r1:32b # Required for ollama/deepseek-r1-32b hub block
98
-
```
99
-
If the model isn't installed, Ollama will return: `404 model "deepseek-r1:32b" not found, try pulling it first`
100
+
**Important**: Hub blocks only provide configuration - you still need to pull
101
+
the model locally. The hub block `ollama/deepseek-r1-32b` configures Continue
102
+
to use `model: deepseek-r1:32b`, but the actual model must be installed:
103
+
```bash # Check what the hub block expects (view on hub.continue.dev) # Then
104
+
pull that exact model tag locally ollama pull deepseek-r1:32b # Required for
105
+
ollama/deepseek-r1-32b hub block ```If the model isn't installed, Ollama will
106
+
return: `404 model "deepseek-r1:32b" not found, try pulling it first`
100
107
</Warning>
101
108
102
109
### Method 2: Using Autodetect
103
110
104
111
Continue can automatically detect available Ollama models. You can configure this in your YAML:
105
112
106
-
```yaml
113
+
```yaml title="~/.continue/config.yaml"
107
114
models:
108
115
- name: Autodetect
109
116
provider: ollama
@@ -112,6 +119,8 @@ models:
112
119
- chat
113
120
- edit
114
121
- apply
122
+
- rerank
123
+
- autocomplete
115
124
```
116
125
117
126
Or use it through the GUI:
@@ -122,7 +131,12 @@ Or use it through the GUI:
122
131
4. Select your desired model from the detected list
123
132
124
133
<Note>
125
-
The Autodetect feature scans your local Ollama installation and lists all available models. When set to `AUTODETECT`, Continue will dynamically populate the model list based on what's installed locally via `ollama list`. This is useful for quickly switching between models without manual configuration.
134
+
The Autodetect feature scans your local Ollama installation and lists all
135
+
available models. When set to `AUTODETECT`, Continue will dynamically populate
136
+
the model list based on what's installed locally via `ollama list`. This is
137
+
useful for quickly switching between models without manual configuration. For
138
+
any roles not covered by the detected models, you may need to manually
139
+
configure them.
126
140
</Note>
127
141
128
142
You can update `apiBase` with the IP address of a remote machine serving Ollama.
@@ -135,12 +149,12 @@ For custom configurations or models not on the hub:
135
149
models:
136
150
- name: DeepSeek R1 32B
137
151
provider: ollama
138
-
model: deepseek-r1:32b # Must match exactly what `ollama list` shows
152
+
model: deepseek-r1:32b # Must match exactly what `ollama list` shows
139
153
apiBase: http://localhost:11434
140
154
roles:
141
155
- chat
142
156
- edit
143
-
capabilities: # Add if not auto-detected
157
+
capabilities: # Add if not auto-detected
144
158
- tool_use
145
159
- name: Qwen2.5-Coder 1.5B
146
160
provider: ollama
@@ -161,14 +175,16 @@ models:
161
175
provider: ollama
162
176
model: deepseek-r1:latest
163
177
capabilities:
164
-
- tool_use # Add this to enable tools
178
+
- tool_use # Add this to enable tools
165
179
```
166
180
167
181
<Warning>
168
-
**Known Issue**: Some models like DeepSeek R1 may show "Agent mode is not supported" or "does not support tools" even with capabilities configured. This is a known limitation where the model's actual tool support differs from its advertised capabilities.
182
+
**Known Issue**: Some models like DeepSeek R1 may show "Agent mode is not
183
+
supported" or "does not support tools" even with capabilities configured. This
184
+
is a known limitation where the model's actual tool support differs from its
185
+
advertised capabilities.
169
186
</Warning>
170
187
171
-
172
188
#### If Agent Mode Shows "Not Supported"
173
189
174
190
1. First, add `capabilities: [tool_use]` to your model config
@@ -181,29 +197,70 @@ See the [Model Capabilities guide](/customize/deep-dives/model-capabilities) for
181
197
182
198
For optimal performance, consider these advanced configuration options:
183
199
184
-
- Memory optimization: Adjust `num_ctx` for context window size
185
-
- GPU acceleration: Use `num_gpu` to control GPU layers
186
-
- Custom model parameters: Temperature, top_p, top_k settings
187
-
- Performance tuning: Batch size and threading options
200
+
```yaml
201
+
models:
202
+
- name: Optimized DeepSeek
203
+
provider: ollama
204
+
model: deepseek-r1:32b
205
+
contextLength: 8192 # Adjust context window (default varies by model)
206
+
completionOptions:
207
+
temperature: 0.7 # Controls randomness (0.0-1.0)
208
+
top_p: 0.9 # Nucleus sampling threshold
209
+
top_k: 40 # Top-k sampling
210
+
num_predict: 2048 # Max tokens to generate
211
+
# Ollama-specific options (set via environment or modelfile)
212
+
# num_gpu: 35 # Number of GPU layers to offload
213
+
# num_thread: 8 # CPU threads to use
214
+
```
215
+
216
+
For GPU acceleration and memory tuning, create an Ollama Modelfile:
217
+
218
+
```
219
+
# Create custom model with optimizations
220
+
FROM deepseek-r1:32b
221
+
PARAMETER num_gpu 35
222
+
PARAMETER num_thread 8
223
+
PARAMETER num_ctx 4096
224
+
```
188
225
189
226
## What Are the Best Practices for Ollama
190
227
191
228
### How to Choose the Right Model
192
229
193
-
Choose models based on your specific needs:
230
+
Choose models based on your specific needs (see [recommended models](/customization/models#recommended-models) for more options):
231
+
232
+
1. **Code Generation**:
233
+
234
+
- `qwen2.5-coder:7b`- Excellent for code completion
0 commit comments