|
| 1 | +```@raw html |
| 2 | +<img width="800" alt="jlesc17" src="./assets/jlesc17.jpg"> |
| 3 | +``` |
| 4 | + |
| 5 | +# Solving optimal control problems on GPU with Julia |
| 6 | + |
| 7 | +### [Jean-Baptiste Caillau](http://caillau.perso.math.cnrs.fr), [Olivier Cots](https://ocots.github.io), [Joseph Gergaud](https://github.com/joseph-gergaud), [Pierre Martinon](https://github.com/PierreMartinon), [Sophia Sed](https://sed-sam-blog.gitlabpages.inria.fr) |
| 8 | + |
| 9 | +```@raw html |
| 10 | +<img width="800" alt="affiliations" src="./assets/affil.jpg"> |
| 11 | +``` |
| 12 | + |
| 13 | +## What it's about |
| 14 | + |
| 15 | +- Nonlinear optimal control of ODEs: |
| 16 | + |
| 17 | +$$ g(x(t_0),x(t_f)) + \int_{t_0}^{t_f} f^0(x(t), u(t))\, \mathrm{d}t \to \min $$ |
| 18 | + |
| 19 | +subject to |
| 20 | + |
| 21 | +$$ \dot{x}(t) = f(x(t), u(t)),\quad t \in [t_0, t_f] $$ |
| 22 | + |
| 23 | +plus boundary, control and state constraints |
| 24 | + |
| 25 | +- Our core interests: numerical & geometrical methods in control, applications |
| 26 | +- Why Julia: fast (+ JIT), strongly typed, high-level (AD, macros), available fast optimisation and ODE solvers, rapidly growing community |
| 27 | + |
| 28 | +```@raw html |
| 29 | +<img width="800" alt="juliacon2025" src="./assets/juliacon2025.jpg"> |
| 30 | +``` |
| 31 | + |
| 32 | +## Discretise then solve strategy (*aka* direct methods) |
| 33 | + |
| 34 | +- Discretising an OCP into an NLP: $h_i := t_{i+1}-t_i$, |
| 35 | + |
| 36 | +$$ g(X_0,X_N) + \sum_{i=0}^{N} h_i f^0(X_i,U_i) \to \min $$ |
| 37 | + |
| 38 | +subject to |
| 39 | + |
| 40 | +$$ X_{i+1} - X_i - h_i f(X_i, U_i) = 0,\quad i = 0,\dots,N-1 $$ |
| 41 | + |
| 42 | +plus other constraints on $X := (X_i)_{i=0,N}$ and $U := (U_i)_{i=0,N}$ such as boundary and path (state and / or control) constraints : |
| 43 | + |
| 44 | +$$ b(t_0, X_0, t_N, X_N) = 0 $$ |
| 45 | + |
| 46 | +$$ g(t_i, X_i, U_i) = 0,\quad i = 0,\dots,N $$ |
| 47 | + |
| 48 | +- SIMD parallelism ($f0$, $f$, $g$) + sparsity: Kernels for GPU ([KernelAbstraction.jl](XXXX)) and sparse linear algebra ([CUDSS.jl](https://github.com/exanauts/CUDSS.jl)) |
| 49 | +- Modelling and optimising for GPU: [ExaModels.jl](https://exanauts.github.io/ExaModels.jl/dev/guide) + [MadNLP.jl](https://madnlp.github.io/MadNLP.jl), with **built-in AD** |
| 50 | +- [Simple example, DSL](@ref tutorial-double-integrator-energy) |
| 51 | +- Compile into an ExaModel (one pass compiler, [syntax + semantics](XXXX)) |
| 52 | +- Simple example, generated code |
| 53 | +```julia |
| 54 | +``` |
| 55 | +- **Remark.** Automated scalarisation of (linear) range constraints |
| 56 | +```julia |
| 57 | +``` |
| 58 | +- Solving (MadNLP + CUDSS) |
| 59 | +```julia |
| 60 | +``` |
| 61 | +- [Goddard problem](https://control-toolbox.org/Tutorials.jl/stable/tutorial-goddard/) |
| 62 | +```julia |
| 63 | +``` |
| 64 | + |
| 65 | +## Wrap up |
| 66 | + |
| 67 | +- High level modelling of optimal control problems |
| 68 | +- Solving on CPU and GPU |
| 69 | + |
| 70 | +## Future |
| 71 | + |
| 72 | +- New [applications](XXXX) (space mechanics, biology, quantum mechanics and more) |
| 73 | +- Additional solvers: benchmarking on CPU / GPU for optimisation, Hamiltonian shooting and pathfollowing |
| 74 | +- Improved AD: collab between Argonne and Inria, [JLESC Shared Infra AD](https://jlesc.github.io/projects/shared_infra_ad) project (XXXX team)... |
| 75 | +- ... and open to contributions! If you like the package, please give us a star ⭐️ |
| 76 | + |
| 77 | +```@raw html |
| 78 | +<a href="https://github.com/control-toolbox/OptimalControl.jl"><img width="800" alt="OptimalControl.jl" src="./assets/star.jpg"></a> |
| 79 | +``` |
| 80 | + |
| 81 | +## control-toolbox.org |
| 82 | + |
| 83 | +- Open toolbox |
| 84 | +- Collection of Julia Packages rooted at [OptimalControl.jl](https://control-toolbox.org/OptimalControl.jl) |
| 85 | + |
| 86 | +```@raw html |
| 87 | +<a href="https://control-toolbox.org"><img width="800" alt="control-toolbox.org" src="./assets/control-toolbox.jpg"></a> |
| 88 | +``` |
| 89 | + |
| 90 | +## Credits (not exhaustive!) |
| 91 | + |
| 92 | +- [ADNLPModels.jl](https://jso.dev/ADNLPModels.jl) |
| 93 | +- [DifferentiationInterface.jl](https://juliadiff.org/DifferentiationInterface.jl/DifferentiationInterface) |
| 94 | +- [DifferentialEquations.jl](https://docs.sciml.ai/DiffEqDocs) |
| 95 | +- [ExaModels.jl](https://exanauts.github.io/ExaModels.jl/dev/guide) |
| 96 | +- [Ipopt.jl](https://github.com/jump-dev/Ipopt.jl) |
| 97 | +- [MadNLP.jl](https://madnlp.github.io/MadNLP.jl) |
| 98 | +- [MLStyle.jl](https://thautwarm.github.io/MLStyle.jl) |
| 99 | + |
| 100 | +## Acknowledgements |
| 101 | + |
| 102 | +Jean-Baptiste Caillau is partially funded by a **France 2030** support managed by the *Agence Nationale de la Recherche*, under the reference ANR-23-PEIA-0004 ([PDE-AI](https://pde-ai.math.cnrs.fr) project). |
| 103 | + |
| 104 | +```@raw html |
| 105 | +<img width="150" alt="affiliations" src="./assets/france-2030.png"> |
| 106 | +``` |
| 107 | + |
0 commit comments