diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 8d41ca86..90d81ede 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -1,24 +1,12 @@ -# [.github/workflows/CI.yml] name: CI + on: push: branches: - main tags: '*' pull_request: + jobs: call: - strategy: - matrix: - version: - - '1.10' - - '1.11' - os: - - ubuntu-latest - arch: - - x64 uses: control-toolbox/CTActions/.github/workflows/ci.yml@main - with: - version: ${{ matrix.version }} - os: ${{ matrix.os }} - arch: ${{ matrix.arch }} diff --git a/.github/workflows/SpellCheck.yml b/.github/workflows/SpellCheck.yml index fe1c7c41..0c377d1d 100644 --- a/.github/workflows/SpellCheck.yml +++ b/.github/workflows/SpellCheck.yml @@ -7,3 +7,6 @@ on: jobs: call: uses: control-toolbox/CTActions/.github/workflows/spell-check.yml@main + with: + extend-identifiers: | + PROPT = "PROPT" \ No newline at end of file diff --git a/ext/Descriptions/robbins.md b/ext/Descriptions/robbins.md index 1750d793..3227b35f 100644 --- a/ext/Descriptions/robbins.md +++ b/ext/Descriptions/robbins.md @@ -56,7 +56,7 @@ The control $u(t)$ typically exhibits a **bang–bang structure** with possible - Robbins, H. M. (1980). *Junction phenomena for optimal control with state-variable inequality constraints of third order*. Journal of Optimization Theory and Applications, 31, 85–99. This is the original paper introducing the Robbins problem. It formulates the third-order state-constrained optimal control problem, describes the accumulation of contact points, and provides theoretical analysis of the junction phenomena. -- Hermant, A. (2008). *Sur l'algorithme de tir pour les problèmes de commande optimale avec contraintes sur l'état* (PhD thesis, École Polytechnique X). +- Hermant, A. (2008). *On the shooting algorithm for optimal control problems with state constraints* (PhD thesis, École Polytechnique X). This thesis discusses numerical shooting methods for state-constrained optimal control problems, including the Robbins problem. It provides practical insights into solving problems with multiple contact points and complex singular arcs. - Jacobson, D. H., Lele, M. M., & Speyer, J. L. (1971). *New necessary conditions of optimality for control problems with state-variable inequality constraints*. Journal of Mathematical Analysis and Applications, 35, 255–284.