Skip to content

Commit 6550ddc

Browse files
authored
Update gaussian_likelihood.py
1 parent 3eda69f commit 6550ddc

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

gpytorch/likelihoods/gaussian_likelihood.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ def raw_noise(self, value: Tensor) -> None:
130130
self.noise_covar.initialize(raw_noise=value)
131131

132132
def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal:
133-
"""
133+
r"""
134134
:return: Analytic marginal :math:`p(\mathbf y)`.
135135
"""
136136
return super().marginal(function_dist, *args, **kwargs)
@@ -186,7 +186,7 @@ def log_marginal(
186186
return res * ~missing_idx
187187

188188
def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal:
189-
"""
189+
r"""
190190
:return: Analytic marginal :math:`p(\mathbf y)`.
191191
"""
192192
return super().marginal(function_dist, *args, **kwargs)
@@ -306,14 +306,14 @@ def _shaped_noise_covar(self, base_shape: torch.Size, *params: Any, **kwargs: An
306306
return res
307307

308308
def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal:
309-
"""
309+
r"""
310310
:return: Analytic marginal :math:`p(\mathbf y)`.
311311
"""
312312
return super().marginal(function_dist, *args, **kwargs)
313313

314314

315315
class DirichletClassificationLikelihood(FixedNoiseGaussianLikelihood):
316-
"""
316+
r"""
317317
A classification likelihood that treats the labels as regression targets with fixed heteroscedastic noise.
318318
From Milios et al, NeurIPS, 2018 [https://arxiv.org/abs/1805.10915].
319319
@@ -408,7 +408,7 @@ def get_fantasy_likelihood(self, **kwargs: Any) -> "DirichletClassificationLikel
408408
return fantasy_liklihood
409409

410410
def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal:
411-
"""
411+
r"""
412412
:return: Analytic marginal :math:`p(\mathbf y)`.
413413
"""
414414
return super().marginal(function_dist, *args, **kwargs)

0 commit comments

Comments
 (0)