Skip to content

Incorporating measurement error with spectral mixture kernel #375

@doccosmos

Description

@doccosmos

What is the recommended method to add measurement error (prefereably heteroscedastic) to a spectral mixture model? I've tried:

specmix = gpytorch.kernels.SpectralMixtureKernel(num_mixtures=4)
error = gpytorch.kernels.WhiteNoiseKernel(train_yerr ** 2.)
self.covar_module = specmix + error

but this does not give a good fit and initialize_from_data does not then work.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions